Full Text:   <2854>

Summary:  <289>

CLC number: 

On-line Access: 2022-10-21

Received: 2022-07-27

Revision Accepted: 2022-08-23

Crosschecked: 2022-10-21

Cited: 0

Clicked: 743

Citations:  Bibtex RefMan EndNote GB/T7714


Tian LAN


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.10 P.757-770


Modeling the optimal compensation capacitance of a giant magnetostrictive ultrasonic transducer with a loosely-coupled contactless power transfer system

Author(s):  Tian LAN, Ping-fa FENG, Jian-jian WANG, Jian-fu ZHANG, Hui-lin ZHOU

Affiliation(s):  State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; more

Corresponding email(s):   wangjjthu@tsinghua.edu.cn

Key Words:  Rotary ultrasonic machining, Giant magnetostrictive transducer (GMT), Loosely-coupled contactless power transfer (LCCPT), Electromechanical equivalent circuit, Optimal compensation capacitance

Share this article to: More |Next Article >>>

Tian LAN, Ping-fa FENG, Jian-jian WANG, Jian-fu ZHANG, Hui-lin ZHOU. Modeling the optimal compensation capacitance of a giant magnetostrictive ultrasonic transducer with a loosely-coupled contactless power transfer system[J]. Journal of Zhejiang University Science A, 2022, 23(10): 757-770.

@article{title="Modeling the optimal compensation capacitance of a giant magnetostrictive ultrasonic transducer with a loosely-coupled contactless power transfer system",
author="Tian LAN, Ping-fa FENG, Jian-jian WANG, Jian-fu ZHANG, Hui-lin ZHOU",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Modeling the optimal compensation capacitance of a giant magnetostrictive ultrasonic transducer with a loosely-coupled contactless power transfer system
%A Tian LAN
%A Ping-fa FENG
%A Jian-jian WANG
%A Jian-fu ZHANG
%A Hui-lin ZHOU
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 10
%P 757-770
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200367

T1 - Modeling the optimal compensation capacitance of a giant magnetostrictive ultrasonic transducer with a loosely-coupled contactless power transfer system
A1 - Tian LAN
A1 - Ping-fa FENG
A1 - Jian-jian WANG
A1 - Jian-fu ZHANG
A1 - Hui-lin ZHOU
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 10
SP - 757
EP - 770
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200367

The giant magnetostrictive rotary ultrasonic processing system (GMUPS) with a loosely-coupled contactless power transfer (LCCPT) has emerged as a high-performance technique for the processing of hard and brittle materials, owing to its high power density. A capacitive compensation is required to achieve the highest energy efficiency of GMUPS to provide sufficient vibration amplitude when it works in the resonance state. In this study, an accurate model of the optimal compensation capacitance is derived from a new electromechanical equivalent circuit model of the GMUPS with LCCPT, which consists of an equivalent mechanical circuit and an electrical circuit. The phase lag angle between the mechanical and electrical circuits is established, taking into account the non-negligible loss in energy conversion of giant magnetostrictive material at ultrasonic frequency. The change of system impedance characteristics and the effectiveness of the system compensation method under load are analyzed. Both idle vibration experiments and machining tests are conducted to verify the developed model. The results show that the GMUPS with optimal compensation capacitance can achieve the maximum idle vibration amplitude and smallest cutting force. In addition, the effects of magnetic conductive material and driving voltages on the phase lag angle are also evaluated.


结论:1.无论是在空载状态下还是在加工过程中,采用最优补偿电容都表现出优越的性能。采用最优补偿电容时,系统可以获得最大振幅,同时在整个加工过程中切削力最小。2. LCCPT的使用和补偿电容的取值对系统的电路特性有显著的影响,而对机械谐振频率的影响很小。电谐振频率更接近机械谐振频率可以提高系统的振动性能。3.系统电回路与机械等效回路之间的相位滞后角导致最小电流频率与机械谐振频率之间存在差异。系统的相位滞后角与系统不必要的功率损耗直接相关。在系统达到磁饱和前,驱动电压对相位滞后角影响不大。导磁结构的材料特性会显著地影响相位滞后角。因此,选择在高频处损耗低的导磁材料可以有效地降低相位滞后角。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]CaiWC,ZhangJF,FengPF,et al.,2017a.A bilateral capacitance compensation method for giant magnetostriction ultrasonic processing system.The International Journal of Advanced Manufacturing Technology,90(9):2925-2933.

[2]CaiWC,ZhangJF,YuDW,et al.,2017b.Research on the electromechanical conversion efficiency for giant magnetostrictive ultrasonic machining system.Journal of Mechanical Engineering,53(19):52-58(in Chinese).

[3]CalkinsFT,1997.Design, Analysis, and Modeling of Giant Magnetostrictuve Transducers.PhD Thesis,Iowa State University, Ames,USA.

[4]ChenL,ZhuYC,YangXL,et al.,2014.Driving magnetic path modeling and numerical analyses in giant magnetostrictive pump.China Mechanical Engineering,25(6):718-722(in Chinese).

[5]ChenWY,2015.Research on Underwater Acoustic Transducer Based on Giant Magnetostrictive Material. MS Thesis,Hangzhou Dianzi University,Hangzhou, China(in Chinese).

[6]ClaeyssenF,LhermetN,Le LettyR,et al.,1997.Actuators, transducers and motors based on giant magnetostrictive materials.Journal of Alloys and Compounds,258(1-2):61-73.

[7]FanP,FengPF,ZhangJF,et al.,2019.Design and compensation of partially coupled contactless power transmission in GMM ultrasonic processing system.Aeronautical Manufacturing Technology,62(5):88-95(in Chinese).

[8]GongH,FangFZ,HuXT,2010.Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials.International Journal of Machine Tools and Manufacture,50(3):303-307.

[9]HuangHY,ParamoD,2011.Broadband electrical impedance matching for piezoelectric ultrasound transducers.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,58(12):2699-2707.

[10]JiangXG,ZhangDY,2007.Matching theory of ultrasonic transducer at its passed inherent resonance zone.Journal of Mechanical Engineering,43(3):‍182-186(in Chinese).

[11]LiuDF,CongWL,PeiZJ,et al.,2012.A cutting force model for rotary ultrasonic machining of brittle materials.International Journal of Machine Tools and Manufacture,52(1):77-84.

[12]LiuJJ,JiangXG,GaoZ,et al.,2019.Investigation of the effect of vibration amplitude on the surface integrity in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V.Journal of Mechanical Engineering,55(11):215-223(in Chinese).

[13]MaK,WangJJ,ZhangJF,et al.,2022.A highly temperature-stable and complete-resonance rotary giant magnetostrictive ultrasonic system.International Journal of Mechanical Sciences,214:106927.

[14]PangMX,2010.The Design Theory and Experimental Study of Non-contact Ultrasonic Power Transfer Device. MS Thesis,Taiyuan University of Technology,Taiyuan, China(in Chinese).

[15]ShenH,FengPF,ZhangJF,et al.,2015.Circuit compensation for efficient contactless power transmission in ultrasonic vibration systems.Journal of Tsinghua University (Science & Technology),55(7):728-733(in Chinese).

[16]SongZ,LiYJ,ZhangCG,et al.,2019.Rotating core loss model for motor considering skin effect and dynamic hysteresis effect.Transactions of the Chinese Society of Agricultural Engineering,35(6):74-80.

[17]WakiwakaH,LioM,NagumoM,et al.,1992.Impedance analysis of acoustic vibration element using giant magnetorestrictive material.IEEE Transactions on Magnetics,28(5):2208-2210.

[18]WangH,PeiZJ,CongWL,2020.A feeding-directional cutting force model for end surface grinding of CFRP composites using rotary ultrasonic machining with elliptical ultrasonic vibration.International Journal of Machine Tools and Manufacture,152:103540.

[19]WangJJ,ZhangCL,FengPF,et al.,2016.A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass.The International Journal of Advanced Manufacturing Technology,83(1-4):347-355.

[20]WangJJ,WangYK,ZhangJF,et al.,2021.Structural coloration of non-metallic surfaces using ductile-regime vibration-assisted ultraprecision texturing.Light: Advanced Manufacturing,2(4):434-445.

[21]WangXQ,FengDR,ShangL,et al.,2004.Measurement and analysis of the pulsed magnetic field phase lag in the ceramic case.Acta Physica Sinica,53(12):4319-4324(in Chinese).

[22]WangY,LinB,WangSL,et al.,2014.Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing.International Journal of Machine Tools and Manufacture,77:66-73.

[23]ZengGX,2013.Theoretical Analysis and Experimental Study of the Giant Magnetostrictive Power Ultrasonic Transducer.PhD Thesis,South China University of Technology, Guangzhou, China(in Chinese).

[24]ZhangJG,2019.Research on Compensation Optimization of Wireless Power Transmission and Control System of Rotary Ultrasonic Machining. PhD Thesis, Harbin Institute of Technology, Harbin, China (in Chinese).

[25]ZhangTL,JiangCB,ZhangH,et al.,2004.Giant magnetostrictive actuators for active vibration control.Smart Materials and Structures,13(3):473-477.

[26]ZhouHL,ZhangJF,FengPF,et al.,2019.An output amplitude model of a giant magnetostrictive rotary ultrasonic machining system considering load effect.Precision Engineering,60:340-347.

[27]ZhouHL,ZhangJF,FengPF,et al.,2020a.An amplitude prediction model for a giant magnetostrictive ultrasonic transducer.Ultrasonics,108:106017.

[28]ZhouHL,ZhangJF,FengPF,et al.,2020b.On the optimum resonance of giant magnetostrictive ultrasonic transducer with capacitance-based impedance compensation.Smart Materials and Structures,29(10):105002.

[29]ZhouHL,ZhangJF,FengPF,et al.,2021.Investigations on a mathematical model for optimum impedance compensation of a giant magnetostrictive ultrasonic transducer and its resonance characteristics.Ultrasonics,110:106286.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE