CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-04-16
Cited: 0
Clicked: 477
Rendi KURNIAWAN, Moran XU, Min Ki CHOO, Shuo CHEN, Yein KWAK, Jielin CHEN, Saood ALI, Hanwei TENG, Pil Wan HAN, Gi Soo KIM, Tae Jo KO. Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator[J]. Journal of Zhejiang University Science A, 2024, 25(4): 292-310.
@article{title="Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator",
author="Rendi KURNIAWAN, Moran XU, Min Ki CHOO, Shuo CHEN, Yein KWAK, Jielin CHEN, Saood ALI, Hanwei TENG, Pil Wan HAN, Gi Soo KIM, Tae Jo KO",
journal="Journal of Zhejiang University Science A",
volume="25",
number="4",
pages="292-310",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300243"
}
%0 Journal Article
%T Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator
%A Rendi KURNIAWAN
%A Moran XU
%A Min Ki CHOO
%A Shuo CHEN
%A Yein KWAK
%A Jielin CHEN
%A Saood ALI
%A Hanwei TENG
%A Pil Wan HAN
%A Gi Soo KIM
%A Tae Jo KO
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 4
%P 292-310
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300243
TY - JOUR
T1 - Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator
A1 - Rendi KURNIAWAN
A1 - Moran XU
A1 - Min Ki CHOO
A1 - Shuo CHEN
A1 - Yein KWAK
A1 - Jielin CHEN
A1 - Saood ALI
A1 - Hanwei TENG
A1 - Pil Wan HAN
A1 - Gi Soo KIM
A1 - Tae Jo KO
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 4
SP - 292
EP - 310
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300243
Abstract: This study presents the development of an ultrasonic transducer with a radius horn for an ultrasonic milling spindle (UMS) system. The ultrasonic transducer was intended to have a working frequency of approximately 30 kHz. Two different materials were considered in the study: stainless steel (SS 316L) and titanium alloy (Ti-6Al-4V). Titanium alloy gave a higher resonance frequency (33 kHz) than stainless steel (30 kHz) under the same preload compression stress. An electromechanical impedance simulation was carried out to predict the impedance resonance frequency for both materials, and the effect of the overhanging toolbar was investigated. According to the electromechanical impedance simulation, the overhanging toolbar length affected the resonance frequency, and the error was less than 3%. Harmonic analysis confirmed that the damping ratio helps determine the resonance amplitude. Therefore, damping ratios of 0.015–0.020 and 0.005–0.020 were selected for stainless steel and titanium alloy, respectively, with an error of less than 1.5%. Experimental machining was also performed to assess the feasibility of ultrasonic-assisted milling; the result was a lesser cutting force and better surface topography of Al 6061.
[1]AdesolaAO, OdeshiAG, LankeUD, 2013. The effects of aging treatment and strain rates on damage evolution in AA 6061 aluminum alloy in compression. Materials & Design, 45:212-221.
[2]Al AhmadM, PlanaR, 2009. Vertical displacement detection of an aluminum nitride piezoelectric thin film using capacitance measurements. International Journal of Microwave and Wireless Technologies, 1(1):5-9.
[3]AminiS, SoleimanimehrH, NateghMJ, et al., 2008. FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool. Journal of Materials Processing Technology, 201(1-3):43-47.
[4]BabitskyVI, AstashevVK, KalashnikovAN, 2004. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications. Ultrasonics, 42(1-9):29-35.
[5]BieWB, ZhaoB, ZhaoCY, et al., 2021. System design and experimental research on the tangential ultrasonic vibration-assisted grinding gear. The International Journal of Advanced Manufacturing Technology, 116:597-610.
[6]BoccacciniAR, 1997. Machinability and brittleness of glass-ceramics. Journal of Materials Processing Technology, 65(1-3):302-304.
[7]BybiA, MouhatO, GaroumM, et al., 2019. One-dimensional equivalent circuit for ultrasonic transducer arrays. Applied Acoustics, 156:246-257.
[8]ChangBQ, YiZX, CaoXB, et al., 2022. Surface feature and material removal in ultrasonic vibration-assisted slot-milling of Ti–6Al–4 V titanium alloy. The International Journal of Advanced Manufacturing Technology, 122:2235-2251.
[9]ChenWQ, HuoDH, ShiYL, et al., 2018. State-of-the-art review on vibration-assisted milling: principle, system design, and application. The International Journal of Advanced Manufacturing Technology, 97(5-8):2033-2049.
[10]ChenWQ, ZhengL, XieWK, et al., 2019. Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling. Journal of Materials Processing Technology, 266:339-350.
[11]ChenYR, SuHH, HeJY, et al., 2021. The effect of torsional vibration in longitudinal-torsional coupled ultrasonic vibration-assisted grinding of silicon carbide ceramics. Materials (Basel), 14(3):688.
[12]ChenZP, ZhaoXH, ChenSX, et al., 2022. Analysis of ultrasonic machining characteristics under dynamic load. Sensors (Basel), 22(21):8576.
[13]ChoudhuryIA, El-BaradieMA, 1998. Machinability of nickel-base super alloys: a general review. Journal of Materials Processing Technology, 77(1-3):278-284.
[14]CornogolubA, CottinetPJ, PetitL, 2014. Analytical modeling of curved piezoelectric, Langevin-type, vibrating transducers using transfer matrices. Sensors and Actuators A: Physical, 214:120-133.
[15]DeAngelisDA, SchulzeGW, 2016. Performance of PZT8 versus PZT4 piezoceramic materials in ultrasonic transducers. Physics Procedia, 87:85-92.
[16]DeAngelisDA, SchulzeGW, WongKS, 2015. Optimizing piezoelectric stack preload bolts in ultrasonic transducers. Physics Procedia, 63:11-20.
[17]FengYX, HsuFC, LuYT, et al., 2021. Force prediction in ultrasonic vibration-assisted milling. Machining Science and Technology, 25(2):307-330.
[18]GaoJ, AltintasY, 2019. Development of a three-degree-of-freedom ultrasonic vibration tool holder for milling and drilling. IEEE/ASME Transactions on Mechatronics, 24(3):1238-1247.
[19]GengDX, ZhangDY, XuYG, et al., 2014. Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP. Journal of Reinforced Plastics and Composites, 33(9):797-809.
[20]GengDX, ZhangDY, XuYG, et al., 2015. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity. Ultrasonics, 59:128-137.
[21]HanX, ZhangDY, 2020. Effects of separating characteristics in ultrasonic elliptical vibration-assisted milling on cutting force, chip, and surface morphologies. The International Journal of Advanced Manufacturing Technology, 108:3075-3084.
[22]Jagadish, RayA, 2018. Design and performance analysis of ultrasonic horn with a longitudinally changing rectangular cross section for USM using finite element analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(7):359.
[23]JallageasJ, K’nevezJY, ChérifM, et al., 2013. Modeling and optimization of vibration-assisted drilling on positive feed drilling unit. The International Journal of Advanced Manufacturing Technology, 67:1205-1216.
[24]KandiR, SahooSK, SahooAK, 2020. Ultrasonic vibration-assisted turning of titanium alloy Ti–6Al–4V: numerical and experimental investigations. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8):399.
[25]KremerD, SalehSM, GhabrialSR, et al., 1981. The state of the art of ultrasonic machining. CIRP Annals, 30(1):107-110.
[26]KumarS, WuCS, PadhyGK, et al., 2017. Application of ultrasonic vibrations in welding and metal processing: a status review. Journal of Manufacturing Processes, 26:295-322.
[27]KurniawanR, KoTJ, 2019. Surface topography analysis in three-dimensional elliptical vibration texturing (3D-EVT). The International Journal of Advanced Manufacturing Technology, 102:1601-1621.
[28]KurniawanR, KiswantoG, KoTJ, 2017. Surface roughness of two-frequency elliptical vibration texturing (TFEVT) method for micro-dimple pattern process. International Journal of Machine Tools and Manufacture, 116:77-95.
[29]KurniawanR, AliS, ParkKM, et al., 2019. Development of a three-dimensional ultrasonic elliptical vibration transducer (3D-UEVT) based on sandwiched piezoelectric actuator for micro-grooving. International Journal of Precision Engineering and Manufacturing, 20(7):1229-1240.
[30]KurniawanR, KoTJ, KumaranST, et al., 2021. 3-DOF ultrasonic elliptical vibration tool holder based on coupled resonance modes for manufacturing micro-groove. Precision Engineering, 67:212-231.
[31]KurucM, 2020. Machining of composite materials by ultrasonic assistance. Advances in Science and Technology Research Journal, 14(2):140-144.
[32]LiC, ZhangFH, MengBB, et al., 2017. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceramics International, 43(3):2981-2993.
[33]LiG, QuJS, XuL, et al., 2022. Study on multi-frequency characteristics of a longitudinal ultrasonic transducer with stepped horn. Ultrasonics, 121:106683.
[34]LiHB, ChenT, SongH, et al., 2021. Design and experimental study of longitudinal-torsional ultrasonic transducer with helical slots considering the stiffness variation. The International Journal of Advanced Manufacturing Technology, 114:3093-3107.
[35]LinSY, GuoH, XuJ, 2018. Actively adjustable step-type ultrasonic horns in longitudinal vibration. Journal of Sound and Vibration, 419:367-379.
[36]LiuS, ShanXB, CaoW, et al., 2017. A longitudinal-torsional composite ultrasonic vibrator with thread grooves. Ceramics International, 43:S214-S220.
[37]LiuYH, ZhangDY, GengDX, et al., 2023. Ironing effect on surface integrity and fatigue behavior during ultrasonic peening drilling of Ti-6Al-4V. Chinese Journal of Aeronautics, 36(5):486-498.
[38]LuH, ZhuLD, YangZC, et al., 2021. Research on the generation mechanism and interference of surface texture in ultrasonic vibration assisted milling. International Journal of Mechanical Sciences, 208:106681.
[39]MarcelK, MarekZ, JozefP, 2014. Investigation of ultrasonic assisted milling of aluminum alloy AlMg4.5Mn. Procedia Engineering, 69:1048-1053.
[40]McBreartyM, KimLH, BilgutayNM, 1988. Analysis of impedance loading in ultrasonic transducer systems. IEEE 1988 Ultrasonics Symposium Proceedings, p.497-502.
[41]MilewskiA, KlukP, KardyśW, et al., 2015. Modelling and designing of ultrasonic welding systems. Archives of Acoustics, 40(1):93-99.
[42]NamluRH, YılmazOD, LotfisadighB, et al., 2022. An experimental study on surface quality of Al6061-T6 in ultrasonic vibration-assisted milling with minimum quantity lubrication. Procedia CIRP, 108:311-316.
[43]NiCB, ZhuLD, LiuCF, et al., 2018. Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V. International Journal of Mechanical Sciences, 142-143:97-111.
[44]NodaNA, HuKJ, SanoY, et al., 2017. Accuracy of disk method to predict roll residual stress by measuring the sliced disk stress. ISIJ International, 57(8):1433-1441.
[45]OstaseviciusV, GaidysR, DaukseviciusR, et al., 2013. Study of vibration milling for improving surface finish of difficult-to-cut materials. Strojniški Vestnik–Journal of Mechanical Engineering, 59(6):351-357.
[46]OthmaniC, ZhangH, LüCF, 2020. Effects of initial stresses on guided wave propagation in multilayered PZT-4/PZT-5A composites: a polynomial expansion approach. Applied Mathematical Modelling, 78:148-168.
[47]PangY, FengPF, ZhangJF, et al., 2020. Frequency coupling design of ultrasonic horn with spiral slots and performance analysis of longitudinal-torsional machining characteristics. The International Journal of Advanced Manufacturing Technology, 106:4093-4103.
[48]PangY, FengPF, WangJJ, et al., 2021. Performance analysis of the longitudinal-torsional ultrasonic milling of Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 113:1255-1266.
[49]PatelLK, SinghAK, SharmaV, et al., 2021. Analysis of a hybrid ultrasonic horn profile using finite element analysis. Materials Today: Proceedings, 41:772-779.
[50]Pérez-SánchezA, SeguraJA, Rubio-GonzalezC, et al., 2020. Numerical design and analysis of a Langevin power ultrasonic transducer for acoustic cavitation generation. Sensors and Actuators A: Physical, 311:112035.
[51]ShamotoE, SuzukiN, TsuchiyaE, et al., 2005. Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces. CIRP Annals, 54(1):321-324.
[52]ShenXH, ZhangJH, XingDX, et al., 2012a. A study of surface roughness variation in ultrasonic vibration-assisted milling. The International Journal of Advanced Manufacturing Technology, 58:553-561.
[53]ShenXH, ZhangJH, LiH, et al., 2012b. Ultrasonic vibration-assisted milling of aluminum alloy. The International Journal of Advanced Manufacturing Technology, 63:41-49.
[54]ShenXH, ShiYL, ZhangJH, et al., 2020. Effect of process parameters on micro-textured surface generation in feed direction vibration assisted milling. International Journal of Mechanical Sciences, 167:105267.
[55]TaoGC, MaC, ShenXH, et al., 2017. Experimental and modeling study on cutting forces of feed direction ultrasonic vibration-assisted milling. The International Journal of Advanced Manufacturing Technology, 90:709-715.
[56]ThoeTB, AspinwallDK, WiseMLH, 1998. Review on ultrasonic machining. International Journal of Machine Tools and Manufacture, 38(4):239-255.
[57]van KervelSJH, ThijssenJM, 1983. A calculation scheme for the optimum design of ultrasonic transducers. Ultrasonics, 21(3):134-140.
[58]VermaGC, PandeyPM, DixitUS, 2018. Modeling of static machining force in axial ultrasonic-vibration assisted milling considering acoustic softening. International Journal of Mechanical Sciences, 136:1-16.
[59]VoroninaS, BabitskyV, 2008. Autoresonant control strategies of loaded ultrasonic transducer for machining applications. Journal of Sound and Vibration, 313(3-5):395-417.
[60]WangJJ, FengPF, ZhangJF, et al., 2018. Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinal-torsional coupled vibration. Manufacturing Letters, 18:1-5.
[61]WangL, HofmannV, BaiFS, et al., 2018. Modeling of coupled longitudinal and bending vibrations in a sandwich type piezoelectric transducer utilizing the transfer matrix method. Mechanical Systems and Signal Processing, 108:216-237.
[62]WangSH, TsaiMC, 2011. Dynamic modeling of thickness-mode piezoelectric transducer using the block diagram approach. Ultrasonics, 51(5):617-624.
[63]WangY, LinB, WangSL, et al., 2014. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. International Journal of Machine Tools and Manufacture, 77:66-73.
[64]WuCJ, ChenSJ, ChengK, et al., 2019. Innovative design and analysis of a longitudinal-torsional transducer with the shared node plane applied for ultrasonic assisted milling. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(12):4128-4139.
[65]XiaY, WanY, LuoXC, et al., 2020. Chatter suppression in large overhang face milling using a toolholder with high dynamic performance. The International Journal of Advanced Manufacturing Technology, 108:1713-1724.
[66]YangY, WeiXY, ZhangL, et al., 2017. The effect of electrical impedance matching on the electromechanical characteristics of sandwiched piezoelectric ultrasonic transducers. Sensors (Basel), 17(12):2832.
[67]ZhangCL, CongWL, FengPF, et al., 2014. Rotary ultrasonic machining of optical K9 glass using compressed air as coolant: a feasibility study. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228(4):504-514.
[68]ZhangJG, LongZL, MaWJ, et al., 2019. Electromechanical dynamics model of ultrasonic transducer in ultrasonic machining based on equivalent circuit approach. Sensors, 19(6):1405.
[69]ZhangM, ZhangD, GengD, et al., 2020. Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V. Materials & Design, 191:108658.
[70]ZhangQ, ShiSJ, ChenWS, 2015. An electromechanical coupling model of a longitudinal vibration type piezoelectric ultrasonic transducer. Ceramics International, 41(Supplement 1):S638-S644.
[71]ZhaoB, BieWB, WangXB, et al., 2019. Design and experimental investigation on longitudinal-torsional composite horn considering the incident angle of ultrasonic wave. The International Journal of Advanced Manufacturing Technology, 105:325-341.
[72]ZhengL, ChenWQ, HuoDH, 2020. Review of vibration devices for vibration-assisted machining. The International Journal of Advanced Manufacturing Technology, 108:1631-1651.
[73]ZhuLD, NiCB, YangZC, et al., 2019. Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti–6Al–4V. Precision Engineering, 57:229-243.
Open peer comments: Debate/Discuss/Question/Opinion
<1>