Full Text:   <459>

Summary:  <248>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-04-16

Cited: 0

Clicked: 622

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Tae Jo KO

https://orcid.org/0000-0003-1465-696X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.4 P.292-310

http://doi.org/10.1631/jzus.A2300243


Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator


Author(s):  Rendi KURNIAWAN, Moran XU, Min Ki CHOO, Shuo CHEN, Yein KWAK, Jielin CHEN, Saood ALI, Hanwei TENG, Pil Wan HAN, Gi Soo KIM, Tae Jo KO

Affiliation(s):  Precision Machining Laboratory, Department of Mechanical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk-do, Republic of Korea; more

Corresponding email(s):   pwhan@keri.re.kr, tjko@yu.ac.kr

Key Words:  Ultrasonic spindle, Ultrasonic vibration assisted-milling (UVAM), 1-degree of freedom (DOF), Frequency, Amplitude, Milling


Rendi KURNIAWAN, Moran XU, Min Ki CHOO, Shuo CHEN, Yein KWAK, Jielin CHEN, Saood ALI, Hanwei TENG, Pil Wan HAN, Gi Soo KIM, Tae Jo KO. Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator[J]. Journal of Zhejiang University Science A, 2024, 25(4): 292-310.

@article{title="Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator",
author="Rendi KURNIAWAN, Moran XU, Min Ki CHOO, Shuo CHEN, Yein KWAK, Jielin CHEN, Saood ALI, Hanwei TENG, Pil Wan HAN, Gi Soo KIM, Tae Jo KO",
journal="Journal of Zhejiang University Science A",
volume="25",
number="4",
pages="292-310",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300243"
}

%0 Journal Article
%T Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator
%A Rendi KURNIAWAN
%A Moran XU
%A Min Ki CHOO
%A Shuo CHEN
%A Yein KWAK
%A Jielin CHEN
%A Saood ALI
%A Hanwei TENG
%A Pil Wan HAN
%A Gi Soo KIM
%A Tae Jo KO
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 4
%P 292-310
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300243

TY - JOUR
T1 - Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator
A1 - Rendi KURNIAWAN
A1 - Moran XU
A1 - Min Ki CHOO
A1 - Shuo CHEN
A1 - Yein KWAK
A1 - Jielin CHEN
A1 - Saood ALI
A1 - Hanwei TENG
A1 - Pil Wan HAN
A1 - Gi Soo KIM
A1 - Tae Jo KO
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 4
SP - 292
EP - 310
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300243


Abstract: 
This study presents the development of an ultrasonic transducer with a radius horn for an ultrasonic milling spindle (UMS) system. The ultrasonic transducer was intended to have a working frequency of approximately 30 kHz. Two different materials were considered in the study: stainless steel (SS 316L) and titanium alloy (Ti-6Al-4V). Titanium alloy gave a higher resonance frequency (33 kHz) than stainless steel (30 kHz) under the same preload compression stress. An electromechanical impedance simulation was carried out to predict the impedance resonance frequency for both materials, and the effect of the overhanging toolbar was investigated. According to the electromechanical impedance simulation, the overhanging toolbar length affected the resonance frequency, and the error was less than 3%. Harmonic analysis confirmed that the damping ratio helps determine the resonance amplitude. Therefore, damping ratios of 0.015–0.020 and 0.005–0.020 were selected for stainless steel and titanium alloy, respectively, with an error of less than 1.5%. Experimental machining was also performed to assess the feasibility of ultrasonic-assisted milling; the result was a lesser cutting force and better surface topography of Al 6061.

刀具悬伸长度和换能器材料对超声主轴振动器的机电阻抗和振幅预测的影响

作者:Rendi KURNIAWAN1,Moran XU1, Min Ki CHOO1, Shuo CHEN1, Yein KWAK1, Jielin CHEN1, Saood ALI1, Hanwei TENG1, Pin WanHAN2, Gi Soo KIM3, Tae Jo KO1
机构:1Precision Machining Laboratory, Department of Mechanical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk-do, Republic of Korea;2Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do, Republic of Korea;3KASWIN Co., Ltd, Changwon-si, Gyeongsangnam-do, Republic of Korea
目的:本文围绕用于设计单自由度谐振装备的阻抗频率和振幅预测展开研究,并考虑刀具悬伸长度(OL)和换能器不同材料的影响。此外,本文旨在提出一种考虑OL和不同材料影响的阻抗和阻尼比模型,以预测谐振频率和振幅。
创新点:1.在阻抗模型中将圆角形变幅杆简化为指数形,并简化夹头、螺母和刀具。2.在振幅仿真分析中考虑振幅与阻尼比的关系,以精确预测振幅。3.在实验验证中研究换能器不同材料的影响。
方法:1.选用不锈钢(SS 316L)和钛合金(Ti-6Al-4V)做为超声换能器的材料,并在超声换能器上施加最大可达20 MPa的预紧力。2.研究OL在40~50 mm范围内变化时对谐振频率的影响,并测量在100~300 V电压下的谐振振幅。3.进行铝合金6061铣削实验以验证超声换能器的性能。
结论:1.钛合金材料具有较高的谐振频率和最大25.6 μm的振幅。2.机电阻抗仿真预测谐振频率的误差小于3%。3.为了准确预测谐振振幅,有必要通过标定校准来确定阻尼比。4.加工可行性实验表明,超声换能器可以使切削力降低20%~30%。

关键词:超声主轴;超声振动辅助铣削;单自由度;频率;振幅;铣削

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AdesolaAO, OdeshiAG, LankeUD, 2013. The effects of aging treatment and strain rates on damage evolution in AA 6061 aluminum alloy in compression. Materials & Design, 45:212-221.

[2]Al AhmadM, PlanaR, 2009. Vertical displacement detection of an aluminum nitride piezoelectric thin film using capacitance measurements. International Journal of Microwave and Wireless Technologies, 1(1):5-9.

[3]AminiS, SoleimanimehrH, NateghMJ, et al., 2008. FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool. Journal of Materials Processing Technology, 201(1-3):43-47.

[4]BabitskyVI, AstashevVK, KalashnikovAN, 2004. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications. Ultrasonics, 42(1-9):29-35.

[5]BieWB, ZhaoB, ZhaoCY, et al., 2021. System design and experimental research on the tangential ultrasonic vibration-assisted grinding gear. The International Journal of Advanced Manufacturing Technology, 116:597-610.

[6]BoccacciniAR, 1997. Machinability and brittleness of glass-ceramics. Journal of Materials Processing Technology, 65(1-3):302-304.

[7]BybiA, MouhatO, GaroumM, et al., 2019. One-dimensional equivalent circuit for ultrasonic transducer arrays. Applied Acoustics, 156:246-257.

[8]ChangBQ, YiZX, CaoXB, et al., 2022. Surface feature and material removal in ultrasonic vibration-assisted slot-milling of Ti–6Al–4 V titanium alloy. The International Journal of Advanced Manufacturing Technology, 122:2235-2251.

[9]ChenWQ, HuoDH, ShiYL, et al., 2018. State-of-the-art review on vibration-assisted milling: principle, system design, and application. The International Journal of Advanced Manufacturing Technology, 97(5-8):2033-2049.

[10]ChenWQ, ZhengL, XieWK, et al., 2019. Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling. Journal of Materials Processing Technology, 266:339-350.

[11]ChenYR, SuHH, HeJY, et al., 2021. The effect of torsional vibration in longitudinal-torsional coupled ultrasonic vibration-assisted grinding of silicon carbide ceramics. Materials (Basel), 14(3):688.

[12]ChenZP, ZhaoXH, ChenSX, et al., 2022. Analysis of ultrasonic machining characteristics under dynamic load. Sensors (Basel), 22(21):8576.

[13]ChoudhuryIA, El-BaradieMA, 1998. Machinability of nickel-base super alloys: a general review. Journal of Materials Processing Technology, 77(1-3):278-284.

[14]CornogolubA, CottinetPJ, PetitL, 2014. Analytical modeling of curved piezoelectric, Langevin-type, vibrating transducers using transfer matrices. Sensors and Actuators A: Physical, 214:120-133.

[15]DeAngelisDA, SchulzeGW, 2016. Performance of PZT8 versus PZT4 piezoceramic materials in ultrasonic transducers. Physics Procedia, 87:85-92.

[16]DeAngelisDA, SchulzeGW, WongKS, 2015. Optimizing piezoelectric stack preload bolts in ultrasonic transducers. Physics Procedia, 63:11-20.

[17]FengYX, HsuFC, LuYT, et al., 2021. Force prediction in ultrasonic vibration-assisted milling. Machining Science and Technology, 25(2):307-330.

[18]GaoJ, AltintasY, 2019. Development of a three-degree-of-freedom ultrasonic vibration tool holder for milling and drilling. IEEE/ASME Transactions on Mechatronics, 24(3):1238-1247.

[19]GengDX, ZhangDY, XuYG, et al., 2014. Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP. Journal of Reinforced Plastics and Composites, 33(9):797-809.

[20]GengDX, ZhangDY, XuYG, et al., 2015. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity. Ultrasonics, 59:128-137.

[21]HanX, ZhangDY, 2020. Effects of separating characteristics in ultrasonic elliptical vibration-assisted milling on cutting force, chip, and surface morphologies. The International Journal of Advanced Manufacturing Technology, 108:3075-3084.

[22]Jagadish, RayA, 2018. Design and performance analysis of ultrasonic horn with a longitudinally changing rectangular cross section for USM using finite element analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(7):359.

[23]JallageasJ, K’nevezJY, ChérifM, et al., 2013. Modeling and optimization of vibration-assisted drilling on positive feed drilling unit. The International Journal of Advanced Manufacturing Technology, 67:1205-1216.

[24]KandiR, SahooSK, SahooAK, 2020. Ultrasonic vibration-assisted turning of titanium alloy Ti‍–‍6Al‍–‍4V: numerical and experimental investigations. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8):399.

[25]KremerD, SalehSM, GhabrialSR, et al., 1981. The state of the art of ultrasonic machining. CIRP Annals, 30(1):107-110.

[26]KumarS, WuCS, PadhyGK, et al., 2017. Application of ultrasonic vibrations in welding and metal processing: a status review. Journal of Manufacturing Processes, 26:295-322.

[27]KurniawanR, KoTJ, 2019. Surface topography analysis in three-dimensional elliptical vibration texturing (3D-EVT). The International Journal of Advanced Manufacturing Technology, 102:1601-1621.

[28]KurniawanR, KiswantoG, KoTJ, 2017. Surface roughness of two-frequency elliptical vibration texturing (TFEVT) method for micro-dimple pattern process. International Journal of Machine Tools and Manufacture, 116:77-95.

[29]KurniawanR, AliS, ParkKM, et al., 2019. Development of a three-dimensional ultrasonic elliptical vibration transducer (3D-UEVT) based on sandwiched piezoelectric actuator for micro-grooving. International Journal of Precision Engineering and Manufacturing, 20(7):1229-1240.

[30]KurniawanR, KoTJ, KumaranST, et al., 2021. 3-DOF ultrasonic elliptical vibration tool holder based on coupled resonance modes for manufacturing micro-groove. Precision Engineering, 67:212-231.

[31]KurucM, 2020. Machining of composite materials by ultrasonic assistance. Advances in Science and Technology Research Journal, 14(2):140-144.

[32]LiC, ZhangFH, MengBB, et al., 2017. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceramics International, 43(3):2981-2993.

[33]LiG, QuJS, XuL, et al., 2022. Study on multi-frequency characteristics of a longitudinal ultrasonic transducer with stepped horn. Ultrasonics, 121:106683.

[34]LiHB, ChenT, SongH, et al., 2021. Design and experimental study of longitudinal-torsional ultrasonic transducer with helical slots considering the stiffness variation. The International Journal of Advanced Manufacturing Technology, 114:3093-3107.

[35]LinSY, GuoH, XuJ, 2018. Actively adjustable step-type ultrasonic horns in longitudinal vibration. Journal of Sound and Vibration, 419:367-379.

[36]LiuS, ShanXB, CaoW, et al., 2017. A longitudinal-torsional composite ultrasonic vibrator with thread grooves. Ceramics International, 43:S214-S220.

[37]LiuYH, ZhangDY, GengDX, et al., 2023. Ironing effect on surface integrity and fatigue behavior during ultrasonic peening drilling of Ti-6Al-4V. Chinese Journal of Aeronautics, 36(5):486-498.

[38]LuH, ZhuLD, YangZC, et al., 2021. Research on the generation mechanism and interference of surface texture in ultrasonic vibration assisted milling. International Journal of Mechanical Sciences, 208:106681.

[39]MarcelK, MarekZ, JozefP, 2014. Investigation of ultrasonic assisted milling of aluminum alloy AlMg4.5Mn. Procedia Engineering, 69:1048-1053.

[40]McBreartyM, KimLH, BilgutayNM, 1988. Analysis of impedance loading in ultrasonic transducer systems. IEEE 1988 Ultrasonics Symposium Proceedings, p.497-502.

[41]MilewskiA, KlukP, KardyśW, et al., 2015. Modelling and designing of ultrasonic welding systems. Archives of Acoustics, 40(1):93-99.

[42]NamluRH, YılmazOD, LotfisadighB, et al., 2022. An experimental study on surface quality of Al6061-T6 in ultrasonic vibration-assisted milling with minimum quantity lubrication. Procedia CIRP, 108:311-316.

[43]NiCB, ZhuLD, LiuCF, et al., 2018. Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V. International Journal of Mechanical Sciences, 142-143:97-111.

[44]NodaNA, HuKJ, SanoY, et al., 2017. Accuracy of disk method to predict roll residual stress by measuring the sliced disk stress. ISIJ International, 57(8):1433-1441.

[45]OstaseviciusV, GaidysR, DaukseviciusR, et al., 2013. Study of vibration milling for improving surface finish of difficult-to-cut materials. Strojniški Vestnik–Journal of Mechanical Engineering, 59(6):351-357.

[46]OthmaniC, ZhangH, LüCF, 2020. Effects of initial stresses on guided wave propagation in multilayered PZT-4/PZT-5A composites: a polynomial expansion approach. Applied Mathematical Modelling, 78:148-168.

[47]PangY, FengPF, ZhangJF, et al., 2020. Frequency coupling design of ultrasonic horn with spiral slots and performance analysis of longitudinal-torsional machining characteristics. The International Journal of Advanced Manufacturing Technology, 106:4093-4103.

[48]PangY, FengPF, WangJJ, et al., 2021. Performance analysis of the longitudinal-torsional ultrasonic milling of Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 113:1255-1266.

[49]PatelLK, SinghAK, SharmaV, et al., 2021. Analysis of a hybrid ultrasonic horn profile using finite element analysis. Materials Today: Proceedings, 41:772-779.

[50]Pérez-SánchezA, SeguraJA, Rubio-GonzalezC, et al., 2020. Numerical design and analysis of a Langevin power ultrasonic transducer for acoustic cavitation generation. Sensors and Actuators A: Physical, 311:112035.

[51]ShamotoE, SuzukiN, TsuchiyaE, et al., 2005. Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces. CIRP Annals, 54(1):321-324.

[52]ShenXH, ZhangJH, XingDX, et al., 2012a. A study of surface roughness variation in ultrasonic vibration-assisted milling. The International Journal of Advanced Manufacturing Technology, 58:553-561.

[53]ShenXH, ZhangJH, LiH, et al., 2012b. Ultrasonic vibration-assisted milling of aluminum alloy. The International Journal of Advanced Manufacturing Technology, 63:41-49.

[54]ShenXH, ShiYL, ZhangJH, et al., 2020. Effect of process parameters on micro-textured surface generation in feed direction vibration assisted milling. International Journal of Mechanical Sciences, 167:105267.

[55]TaoGC, MaC, ShenXH, et al., 2017. Experimental and modeling study on cutting forces of feed direction ultrasonic vibration-assisted milling. The International Journal of Advanced Manufacturing Technology, 90:709-715.

[56]ThoeTB, AspinwallDK, WiseMLH, 1998. Review on ultrasonic machining. International Journal of Machine Tools and Manufacture, 38(4):239-255.

[57]van KervelSJH, ThijssenJM, 1983. A calculation scheme for the optimum design of ultrasonic transducers. Ultrasonics, 21(3):134-140.

[58]VermaGC, PandeyPM, DixitUS, 2018. Modeling of static machining force in axial ultrasonic-vibration assisted milling considering acoustic softening. International Journal of Mechanical Sciences, 136:1-16.

[59]VoroninaS, BabitskyV, 2008. Autoresonant control strategies of loaded ultrasonic transducer for machining applications. Journal of Sound and Vibration, 313(3-5):395-417.

[60]WangJJ, FengPF, ZhangJF, et al., 2018. Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinal-torsional coupled vibration. Manufacturing Letters, 18:1-5.

[61]WangL, HofmannV, BaiFS, et al., 2018. Modeling of coupled longitudinal and bending vibrations in a sandwich type piezoelectric transducer utilizing the transfer matrix method. Mechanical Systems and Signal Processing, 108:216-237.

[62]WangSH, TsaiMC, 2011. Dynamic modeling of thickness-mode piezoelectric transducer using the block diagram approach. Ultrasonics, 51(5):617-624.

[63]WangY, LinB, WangSL, et al., 2014. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. International Journal of Machine Tools and Manufacture, 77:66-73.

[64]WuCJ, ChenSJ, ChengK, et al., 2019. Innovative design and analysis of a longitudinal-torsional transducer with the shared node plane applied for ultrasonic assisted milling. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(12):4128-4139.

[65]XiaY, WanY, LuoXC, et al., 2020. Chatter suppression in large overhang face milling using a toolholder with high dynamic performance. The International Journal of Advanced Manufacturing Technology, 108:1713-1724.

[66]YangY, WeiXY, ZhangL, et al., 2017. The effect of electrical impedance matching on the electromechanical characteristics of sandwiched piezoelectric ultrasonic transducers. Sensors (Basel), 17(12):2832.

[67]ZhangCL, CongWL, FengPF, et al., 2014. Rotary ultrasonic machining of optical K9 glass using compressed air as coolant: a feasibility study. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228(4):504-514.

[68]ZhangJG, LongZL, MaWJ, et al., 2019. Electromechanical dynamics model of ultrasonic transducer in ultrasonic machining based on equivalent circuit approach. Sensors, 19(6):1405.

[69]ZhangM, ZhangD, GengD, et al., 2020. Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V. Materials & Design, 191:108658.

[70]ZhangQ, ShiSJ, ChenWS, 2015. An electromechanical coupling model of a longitudinal vibration type piezoelectric ultrasonic transducer. Ceramics International, 41(Supplement 1):S638-S644.

[71]ZhaoB, BieWB, WangXB, et al., 2019. Design and experimental investigation on longitudinal-torsional composite horn considering the incident angle of ultrasonic wave. The International Journal of Advanced Manufacturing Technology, 105:325-341.

[72]ZhengL, ChenWQ, HuoDH, 2020. Review of vibration devices for vibration-assisted machining. The International Journal of Advanced Manufacturing Technology, 108:1631-1651.

[73]ZhuLD, NiCB, YangZC, et al., 2019. Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti–6Al–4V. Precision Engineering, 57:229-243.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE