Full Text:   <2878>

CLC number: TN82; O73

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 5651

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2004 Vol.5 No.3 P.269-273

http://doi.org/10.1631/jzus.2004.0269


A new photonic bandgap cover for a patch antenna with a photonic bandgap substrate


Author(s):  LIN Qing-chun, ZHU Fang-ming, HE Sai-ling

Affiliation(s):  State Key Laboratory of Modern Optical Instrumentation, Center of Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   lqc@coer.zju.edu.cn

Key Words:  Photonic bandgap cover, Patch antenna, FDTD, Plane wave expansion


Share this article to: More

LIN Qing-chun, ZHU Fang-ming, HE Sai-ling. A new photonic bandgap cover for a patch antenna with a photonic bandgap substrate[J]. Journal of Zhejiang University Science A, 2004, 5(3): 269-273.

@article{title="A new photonic bandgap cover for a patch antenna with a photonic bandgap substrate",
author="LIN Qing-chun, ZHU Fang-ming, HE Sai-ling",
journal="Journal of Zhejiang University Science A",
volume="5",
number="3",
pages="269-273",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.0269"
}

%0 Journal Article
%T A new photonic bandgap cover for a patch antenna with a photonic bandgap substrate
%A LIN Qing-chun
%A ZHU Fang-ming
%A HE Sai-ling
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 3
%P 269-273
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.0269

TY - JOUR
T1 - A new photonic bandgap cover for a patch antenna with a photonic bandgap substrate
A1 - LIN Qing-chun
A1 - ZHU Fang-ming
A1 - HE Sai-ling
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 3
SP - 269
EP - 273
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.0269


Abstract: 
A new photonic bandgap (PBG) cover for a patch antenna with a photonic bandgap substrate is introduced. The plane wave expansion method and the FDTD method were used to calculate such an antenna system. Numerical results for the input return loss, radiation pattern, surface wave, and the directivity of the antennas are presented. A comparison between the conventional patch antenna and the new PBG antenna is given. It is shown that the new PBG cover is very efficient for improving the radiation directivity. The physical reasons for the improvement are also given.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Balanis, C.A., 1997. Antenna Theory: Analysis and Design, Second Edition. John Wiley & Sons Inc., New York.

[2] Berenger, J.P., 1994. A perfectly matched layer for the adsorption of electromagnetic waves.J. Comput. Phys.,114:185-200.

[3] Brown, E.R., Parker, C.D., Yablonovitch, E., 1993. Radiation properties if a planar antenna on a photonic crystal substrate.J. Opt. Soc. Am.:B,10:404.

[4] Gonzalo, R., Martinez, B., De Maagt, P., Sorolla, M., 1999. Improved patch antenna performance by using photonic bandgap substrates.Microwave Opt. Technol. Lett.,24:213-215.

[5] Joannopoulos, J.D., Villeneuve, P.R., Fan, S., 1997. Photonic crystals: putting a new twist on light.Nature,386:143.

[6] Kesler, M.P., Maloney, J.G., Shirley, B.L., Smith, G.S., 1996.Antenna design with the use of photonic bandgap materials as all-dielectric planar reflectors.Microwave Opt. Technol. Lett.,11:169-174.

[7] Lin, Q.C., Fu, J., He, S.L., Zhang, J.W., 2002. Metallic photonic bandgap resonant antennas with high directivity and high radiation resistance.Chin. Phys. Lett.,19:804-806.

[8] Ozbay, E., Abeyta, A., Tuttle, G., Tringides, M., Biswas, R., Chan, C.T., Soukoulis, C.M., Ho, K.M., 1994.Measurement of athree-dimensional photonic band gap in a crystal structure made of dielectric rods.Phys. Rev.:B,50:1945-1948.

[9] Plihal, M., Maradudin, A.A., 1991. Photonic band structure of two-dimensional systems: the triangular lattice.Phys. Rev.:B,44:8565-571.

[10] Qiu, M., He, S.L., 2000. Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions.Phys. Rev.:B,61:12871-2876.

[11] Simovski, C.R., He, S.L., 2001. Antennas based on modified metallic photonic bandgap structures consisting of capacitively loaded wires.Microw Opt. Technol. Lett.,31:214-221.

[12] Taflove, A., 1995. Computational Electrodynamics: The Finite-Difference Time-Domain Method.Boston-London: Artech House, chap 3.

[13] Thevenot, M., Denis, M.S., Reineix, A., Jecko, B., 1999. Design of a new photonic cover to increase antenna directivity.Microwave Opt. Technol. Lett.,22:136-139.

[14] Yablonovitch, E., 1994. Photonic crystals.J. Modern Opt.,41:173-194.

[15] Ying, Z., Kildal, P.S., 1996. Improvements of dipole, helix, spiral, microstrip patch and aperture antennas with ground planes by using corrugated soft surfaces.IEEE ProcessMicrowave Antennas Propagation,143:244-248.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE