CLC number: TU31
On-line Access:
Received: 2005-10-20
Revision Accepted: 2005-11-10
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4544
Li Xiang-yong, Wang Min-zhong. General solutions for special orthotropic piezoelectric media[J]. Journal of Zhejiang University Science A, 2006, 7(3): 335-339.
@article{title="General solutions for special orthotropic piezoelectric media",
author="Li Xiang-yong, Wang Min-zhong",
journal="Journal of Zhejiang University Science A",
volume="7",
number="3",
pages="335-339",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0335"
}
%0 Journal Article
%T General solutions for special orthotropic piezoelectric media
%A Li Xiang-yong
%A Wang Min-zhong
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 3
%P 335-339
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0335
TY - JOUR
T1 - General solutions for special orthotropic piezoelectric media
A1 - Li Xiang-yong
A1 - Wang Min-zhong
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 3
SP - 335
EP - 339
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0335
Abstract: This paper presents the forms of the general solution for general anisotropic piezoelectric media starting from the basic equations of piezoelasticity by using the operator method introduced by Lur’e (1964), and gives the analytical form of the general solution for special orthotropic piezoelectric media. This paper uses the non-uniqueness of the general solution to obtain the generalized LHN solution and the generalized e-L solution for special orthotropic piezoelectric media. When the special orthotropic piezoelectric media degenerate to transversely piezoelectric media, the solution given by this paper degenerates to the solution for transversely isotropic piezoelectric media accordingly, so that this paper generalized the results in transversely isotropic piezoelectric media.
[1] Ding, H.J., Chen, B., Liang, J., 1996. General solutions for coupled equations for piezoelectric media. International Journal of Solids and Structures, 33(18):2283-2298.
[2] Ding, H.J., Chen, B., Liang, J., 1997a. On the Green’s functions for two-phase transversely isotropic piezoelectric media. International Journal of Solids and Structures, 34(16):3041-3057.
[3] Ding, H.J., Wang, G.Q., Chen, W.Q., 1997b. General solution of plane problem of piezoelectric media expressed by “harmonic functions”. Applied Mathematics and Mechanics, 18(8):757-764.
[4] Ding, H.J., Wang, G.Q., Chen, W.Q., 1997c. Green’s functions for a two-phase infinite piezoelectric plane. Proceedings of the Royal Society of London, Series A, 453:2241-2257.
[5] Lur’e, A.I., 1964. Three-dimensional Problems of the Theory of Elasticity. Interscience Publishers, New York.
[6] Xu, S.P., 2005. General Solution of Piezoelasticity and its Applications in Thick Plate Problems. Ph.D Thesis, Peking University, Beijing, China (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>