Full Text:   <3083>

CLC number: TP39

On-line Access: 

Received: 2006-04-10

Revision Accepted: 2006-04-19

Crosschecked: 0000-00-00

Cited: 16

Clicked: 5868

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.7 P.1215-1224

http://doi.org/10.1631/jzus.2006.A1215


Surfel-based surface modeling for robotic belt grinding simulation


Author(s):  REN Xiang-yang, MUELLER Heinrich, KUHLENKOETTER Bernd

Affiliation(s):  Robotics Research Institute, University of Dortmund, Dortmund 44227, Germany; more

Corresponding email(s):   xiangyang.ren@uni-dortmund.de

Key Words:  Surface modelling, Surfel, Belt-grinding simulation


REN Xiang-yang, MUELLER Heinrich, KUHLENKOETTER Bernd. Surfel-based surface modeling for robotic belt grinding simulation[J]. Journal of Zhejiang University Science A, 2006, 7(7): 1215-1224.

@article{title="Surfel-based surface modeling for robotic belt grinding simulation",
author="REN Xiang-yang, MUELLER Heinrich, KUHLENKOETTER Bernd",
journal="Journal of Zhejiang University Science A",
volume="7",
number="7",
pages="1215-1224",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1215"
}

%0 Journal Article
%T Surfel-based surface modeling for robotic belt grinding simulation
%A REN Xiang-yang
%A MUELLER Heinrich
%A KUHLENKOETTER Bernd
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 7
%P 1215-1224
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1215

TY - JOUR
T1 - Surfel-based surface modeling for robotic belt grinding simulation
A1 - REN Xiang-yang
A1 - MUELLER Heinrich
A1 - KUHLENKOETTER Bernd
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 7
SP - 1215
EP - 1224
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1215


Abstract: 
The new free-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate the simulation implementation. A local process model exploits the advantage of surfel representation to compute the material removal rate and the final surface grinding error can be easily carried out. With the help of this system, robot programmers can improve the path planning and predict potential problems by visualizing the manufacturing process.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Adams, B., Dutre, P., 2003. Interactive boolean operations on surfel-bounded solids. ACM Trans. Graph., 22(3):651-656.

[2] Ayasse, J., 2003. Discrete Displacement Fields: A Versatile Representation of Geometry for Simulation in Computer-Aided Manufacturing. Ph.D Thesis, University Dortmund, Dortmund.

[3] Blinn, F.J., 1978. Simulation of Wrinkled Surfaces. Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’78. New York, USA, p.286-292.

[4] Blum, H., Suttmeier, F.T., 2000. An adaptive finite element discretisation for a simplified Signorini problem. Calcolo., 37(2):65-77.

[5] Blum, H., Schroeder, A., Suttmeier, F.T., 2003. A Posteriori Error Bounds for Finite Element Schemes for a Model Friction Problem. Witten-Bommerholz.

[6] Chhugani, J., Kumar, S., 2003. Budget Sampling of Parametric Surface Patches. Proceedings of the 2003 Symposium on Interactive 3D Graphics. New York, USA, p.131-138.

[7] Doggett, M., Hirche, J., 2000. Adaptive View Dependent Tessellation of Displacement Maps. Proceedings from the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware. New York, USA, p.59-66.

[8] Glaeser, G., Gröller, E., 1998. Efficient Volume-generation During the Simulation of NC-milling. In: Hege, H.C., Polthier, K. (Eds.), Mathematical Visualization. Springer, Heidelburg, p.89-106.

[9] Hammann, G., 1998. Modellierung des Abtragsverhaltens Elastischer Robotergefuehrter Schleifwerkzeuge. Ph.D Thesis, University Stuttgart, Stuttgart, Germany.

[10] Herman, T.G., 1992. Discrete multidimensional jordan surfaces. CVGIP: Graph. Models Image Process, 54(6):507-515.

[11] Huang, Y., Oliver, H.J., 1994. NC Milling Error Assessment and Tool Path Correction. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’94, p.287-294.

[12] Jerard, R.B., Hussaini, S.Z., Drysdale, R.L., Schaudt, B., 1989. Approximate methods for simulation and verification of numerically controlled machining programs. The Visual Computer, 5(6):329-348.

[13] Kawashima, Y., Itoh, K., Ishida, T., Nonaka, S., Ejiri, K., 1991. A flexible quantitative method for NC machining verification using a space-division based solid model. The Visual Computer, 7(2-3):149-157.

[14] König, A.H., Gröller, E., 1998. Real Time Simulation and Visualization of NC Milling Processes for Inhomogeneous Materials on Low-end Graphics Hardware. Proceedings of the Computer Graphics International 1998, p.338-349.

[15] Levoy, M., Whitted, T., 1985. The Use of Points as a Display Primitive. Technical Report, Computer Science Department, University of North Carolina at Chapel Hill.

[16] Mueller, H., Surmann, T., Stautner, M., Albersmann, F., Weinert, K., 2003. Online Sculpting and Visualization of Multi-dexel Volumes. Proceedings of the Eighth ACM Symposium on Solid Modelling and Applications, p.258-261.

[17] Oliver, M.A., Webster, R., 1990. Kriging: a method of interpolation for geographical information system. Int. J. Geographical Information Systems, 4(3):313-332.

[18] Pauly, M., Keiser, R., Kobbelt, P.L., Gross, M., 2003. Shape modeling with point-sampled geometry. ACM Trans. Graph., 22(3):641-650.

[19] Pfister, H., Zwicker, M., van Baar, J., Gross, M., 2000. Surfels: Surface Elements as Rendering Primitives. Procedings of SIGGRAPH’00, p.335-342.

[20] Rusinkiewicz, S., Levoy, M., 2000. QSplat: A Multiresolution Point Rendering System for Large Meshes. Proceedings of SIGGRAPH’00, p.343-352.

[21] Saito, T., Takahashi, T., 1991. NC Machining with G-buffer Method. Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’91, ACM Press, p.207-216.

[22] Shepard, D., 1968. A Two-dimensional Interpolation Function for Irregularly-spaced Data. Proceedings of the 1968 23rd ACM National Conference. New York, USA, p.517-524.

[23] Sourin, I.A., Pasko, A.A., 1996. Function representation for sweeping by a moving solid. IEEE Transactions on Visualization and Computer Graphics, 2(1):11-18.

[24] van Hook, T., 1986. Real-time Shaded NC Milling Display. Proceedings from the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’86. ACM Press, p.15-20.

[25] Yang, M., Lee, E., 1996. NC verification for wire-EDM using an r-map. Computer Aided Design, 28(9):733-740.

[26] Zwicker, M., Pfister, H., van Baar, J., Gross, M., 2001. Surface Splatting. Proceedings of SIGGRAPH’01, p.371-378.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE