Full Text:   <2715>

CLC number: TP273

On-line Access: 

Received: 2005-10-17

Revision Accepted: 2006-05-18

Crosschecked: 0000-00-00

Cited: 0

Clicked: 4683

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.10 P.1742-1747


Stabilization of stochastic nonholonomic systems

Author(s):  KE Hai-sen, YE Xu-dong

Affiliation(s):  Department of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   kehaisen@zju.edu.cn

Key Words:  Time-varying technique, Nonholonomic, Backstepping, Stochastic

KE Hai-sen, YE Xu-dong. Stabilization of stochastic nonholonomic systems[J]. Journal of Zhejiang University Science A, 2006, 7(10): 1742-1747.

@article{title="Stabilization of stochastic nonholonomic systems",
author="KE Hai-sen, YE Xu-dong",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Stabilization of stochastic nonholonomic systems
%A KE Hai-sen
%A YE Xu-dong
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 10
%P 1742-1747
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1742

T1 - Stabilization of stochastic nonholonomic systems
A1 - KE Hai-sen
A1 - YE Xu-dong
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 10
SP - 1742
EP - 1747
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1742

In this work, we investigate the stabilization control design of nonholonomic stochastic system in strict-feedback form. Under the condition of all states being available for feedback, a state feedback controller was developed via the stochastic Lyapunov-like theorem and backstepping design technique. The controllers guarantee all states of the closed-loop system are bounded in probability, and largely asymptotically stable when the stochastic disturbances equal to zero at the equilibrium point of the open-loop system. Besides, the time-varying technique was introduced to avoid the uncontrollable state of chained system.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Chang, Y.C., Chen, B.S., 2002. Adaptive tracking control for nonholonomic Caplygin systems. IEEE Transactions on Control Systems Technology, 10(1):96-104.

[2] Deng, H., Krstic, M., 1999. Output-feedback stochastic nonlinear stabilization. IEEE Transactions on Automatic Control, 44(2):328-333.

[3] Fan, H.J., Ge, S.S., 2004. Adaptive State Feedback Control for a Class of Stochastic Nonlinear Systems. IEEE Conference on Decision and Control. Paradise Island, Bahamas, p.2996-3000.

[4] Fukao, T., Nakagawa, H., Adachi, N., 2000. Adaptive tracking control of a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation, 16(5):609-615.

[5] Ge, S.S., Wang, Z.P., Lee, T.H., 2003. Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica, 39(8):1451-1460.

[6] Hu, Y.M., Ge, S.S., Su, C.Y., 2004. Stabilization of uncertain nonholonomic system via time-varying sliding mode control. IEEE Transactions on Automatic Control, 49(5):757-763.

[7] Jiang, Z.P., 2001. Saturated stabilization and tracking of a nonholonomic mobile robot. System & Control Letters, 42(5):327-332.

[8] Jiang, Z.P., Nijmeijer, H., 1999. A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Transactions on Automatic Control, 44(2):265-279.

[9] Ke, H.S., Ye, X.D., 2006. Robust adaptive controller design for a class of nonlinear systems with unknown high frequency gains. Journal of Zhejiang University SCIENCE A, 7(3):315-320.

[10] Kim, B., Tsiotras, P., 2002. Controllers for unicycle-type wheeled robots: theoretical results and experimental validation. IEEE Transactions on Robotics and Automation, 18(3):294-307.

[11] Liu, Y.G., Zhang, J.F., 2004. Reduced-order observer-based control design for nonlinear stochastic systems. System & Control Letters, 52(2):123-135.

[12] Mnif, F., 2004. Recursive Backstepping Stabilization of a Wheeled Mobile Robot. First International Symposium on Control Communications and Signal Processing. Hammamet, Tunisia, p.135-139.

[13] Samson, C., 1995. Control of the chained systems application to path following and time-varying point-stabilization of mobile robots. IEEE Transactions on Automatic Control, 40(1):64-77.

[14] Tian, Y.P., Li, S.H., 2002. Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica, 38(7):1139-1146.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE