Full Text:   <3396>

CLC number: Q94

On-line Access: 

Received: 2007-01-22

Revision Accepted: 2007-04-20

Crosschecked: 0000-00-00

Cited: 16

Clicked: 5676

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2007 Vol.8 No.7 P.470-475


Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa

Author(s):  RAGUNATHAN Irulappan, PANNEERSELVAM Natarajan

Affiliation(s):  Research Centre and Postgraduate Studies in Botany, the Madura College, Madurai-625 011, Tamil Nadu, India

Corresponding email(s):   npanneer1958@gmail.com

Key Words:  Chromosomal aberrations, Sodium azide, Genotoxicity, Allium cepa

RAGUNATHAN Irulappan, PANNEERSELVAM Natarajan. Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa[J]. Journal of Zhejiang University Science B, 2007, 8(7): 470-475.

@article{title="Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa",
author="RAGUNATHAN Irulappan, PANNEERSELVAM Natarajan",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa
%J Journal of Zhejiang University SCIENCE B
%V 8
%N 7
%P 470-475
%@ 1673-1581
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.B0470

T1 - Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa
A1 - RAGUNATHAN Irulappan
J0 - Journal of Zhejiang University Science B
VL - 8
IS - 7
SP - 470
EP - 475
%@ 1673-1581
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.B0470

Turmeric has long been used as a spice and food colouring agent in Asia. In the present investigation, the antimutagenic potential of curcumin was evaluated in Allium cepa root meristem cells. So far there is no report on the biological properties of curcumin in plant test systems. The root tip cells were treated with sodium azide at 200 and 300 µg/ml for 3 h and curcumin was given at 5, 10 and 20 µg/ml for 16 h, prior to sodium azide treatment. The tips were squashed after colchicine treatment and the cells were analyzed for chromosome aberration and mitotic index. Curcumin induces chromosomal aberration in Allium cepa root tip cells in an insignificant manner, when compared with untreated control. sodium azide alone induces chromosomal aberrations significantly with increasing concentrations. The total number of aberrations was significantly reduced in root tip cells pretreated with curcumin. The study reveals that curcumin has antimutagenic potential against sodium azide induced chromosomal aberrations in Allium cepa root meristem cells. In addition, it showed mild cytotoxicity by reducing the percentage of mitotic index in all curcumin treated groups, but the mechanism of action remains unknown. The antimutagenic potential of curcumin is effective at 5 µg/ml in Allium cepa root meristem cells.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Adams, B.K., Ferstl, E.M., Davis, M.C., Herold, M., Kurtkaya, S., Camalier, R.F., Hollingshead, M.G., Kaur, G., Sausville, E.A., Rickles, F.R., et al., 2004. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem., 12(14):3871-3883.

[2] Ahmad, M.S., Sheeba, Afzal, M., 2004. Amelioration of genotoxic damage by certain phytoproducts in human lymphocytes cultures. Chem. Biol. Interact., 149(2-3):107-115.

[3] Anto, R.J., George, J., Babu, K.V., Rajasekharan, K.N., Kuttan, R., 1996. Antimutagenic and anticarcinogenic activity of natural and synthetic curcuminoids. Mutation Research/Genetic Toxicology, 370(2):127-131.

[4] Anto, R.J., Mukhopadhyay, A., Denning, K., Aggarwal, B.B., 2002. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 23(1):143-150.

[5] Antunes, L.M., Araujo, M.C., Darin, J.D., Bianchi, M.L., 2000. Effects of the anti-oxidants curcumin and vitamin C on cisplatin induced clastogenesis in Wistar rat bone marrow cells. Mutat. Res., 465(1-2):131-137.

[6] Arenaz, P., Nilan, R.A., 1981. Effect of sodium azide on sister chromatid exchanges in human lymphocytes and Chinese hamster ovary cells. Mutation Research/Genetic Toxicology, 88(2):217-221.

[7] Arenaz, P., Nilan, R.A., Kleinhofs, A., 1983. Lack of interaction of single strand breaks in mammalian cells by sodium azide and its proximal mutagens. Mutation Research/Genetic Toxicology, 116(3-4):423-429.

[8] Arenaz, P., Hallberg, L., Mancillas, F., Gutierrez, G., Garcia, S., 1989. Sodium azide mutagenesis in mammals: inability of mammalian cells to convert azide to a mutagenic intermediate. Mutation Research Letters, 227(1):63-67.

[9] Azuine, M.A., Kayal, J.J., Bhide, S.V., 1992. Protective role of aqueous turmeric extract against mutagenicity of direct acting carcinogens as well as Benzo [alpha] pyrene induced genotoxicity and carcinogenicity. J. Cancer Res. Clin. Oncol., 118(6):447-452.

[10] Chattopadhyay, J., Biswas, K., Bandyopadhyay, U., Banerjee, R.K., 2004. Turmeric and curcumin: biological actions and medicinal applications. Curr. Sci., 87:44-53.

[11] El-Ashmawy, I.M., Ashry, K.M., El-Nahas, A.F., Salama, O.M., 2006. Protection by turmeric and myrrh against liver oxidative damage and genotoxicity induced by lead acetate in mice. Basic Clin. Pharmacol. Toxicol., 98(1):32-37.

[12] el Hamss, R., Idaomar, M., 2002. Antimutagens and anticarcinogenic agents, identification and mechanism of action of food xenobiotics. Therapie, 57(6):512-517.

[13] el Hamss, R., Analla, M., Campos-Sanchez, J., Alonso-Moraga, A., Munoz-Serrano, A., Idaomar, M., 1999. A dose dependent anti-genotoxic effect of turmeric. Mutat. Res., 446(1):135-139.

[14] Ferguson, L.R., 1994. Antimutagens as cancer chemopreventive agents in the diet. Mutat. Res., 307(1):395-410.

[15] Goud, V.K., Polasa, K., Krishnaswamy, K.J., 1993. Effects of turmeric on xenobiotics metabolizing enzymes. Plant Foods Hum. Nutr., 44(1):87-92.

[16] Grant, W.F., 1994. The present status of higher plant assays for the detection of environmental mutagens. Mutat. Res., 310(2):175-185.

[17] Grant, W.F., Salamone, M.F., 1994. Comparative mutagenicity of chemicals selected for test in the International Program on Chemicals Safety’s collaborative study on plant systems for the detection of environmental mutagens. Mutat. Res., 310(2):187-209.

[18] Hayatsu, H., Arimoto, S., Negishi, T., 1988. Dietary inhibitors of mutagenesis and carcinogenesis. Mutat. Res., 202(2):429-446.

[19] Jovanovic, S.V., Boone, C.W., Steenken, S., Trinoga, M., Karskey, R.B., 2001. How works preferentially with water-soluble antioxidants. J. Am. Chem. Soc., 123(13):3064-3068.

[20] Kalpana, C., Menon, V.P., 2004. Inhibition of nicotine induced toxicity by curcumin and curcumin analogs: a comparative study. J. Med. Food, 7(4):467-471.

[21] Kleinhofs, A., Smith, J.A., 1976. Effect of excision repair on azide induced mutagenesis. Mutat. Res., 41(2-3):233-240.

[22] Kunchandy, E., Rao, M.N.A., 1990. Oxygen radical scavenging activity of curcumin. International Journal of Pharmaceutics, 58(3):237-240.

[23] Masuda, T., Maekawa, T., Hidaka, K., Bando, H., Takeda, Y., Yamaguchi, H., 2001. Chemical studies on antioxidant mechanism of curcumin: analysis of oxidative coupling products from curcumin and linoleate. J. Agric. Food Chem., 49(5):2539-2547.

[24] Nagabhushan, M., Bhide, S.V., 1987. Anti-mutagenic and anticarcinogenic action of turmeric (Curcumas longa). J. Nutr. Growth Cancer, 4:82-89.

[25] Nagabhushan, M., Amonkar, A.J., Bhide, S.V., 1987. In vitro antimutagenicity of curcumin against environmental mutagens. Food Chem. Toxicol., 25(7):545-547.

[26] Naik, R.S., Mujumdar, A.M., Ghaskadbi, S., 2004. Protection of liver cells from ethanol cytotoxicity in liver slice culture in vitro. J. Ethnopharmacol., 95(1):31-37.

[27] Nilan, R.A., Sideris, E.G., Kleinhofs, A., Sander, C., Konzak, C.T., 1973. Azide is a potent mutagen. Mutat. Res., 17:141-144.

[28] Oda, Y., 1995. Inhibitory effect of curcumin on SOS functions induced by UV irradiation. Mutation Research Letters, 348(2):67-73.

[29] Owais, W.M., Kleinhofs, A., 1988. Metabolic activation of the mutagen azide in biological systems. Mutat. Res., 197:313-323.

[30] Polasa, K., Sesikaran, B., Krishna, T.P., Krishnaswamy, K., 1991. Turmeric (Curcuma longa)-induced reduction in urinary mutagens. Food Chem. Toxicol., 29(10):699-706.

[31] Premkumar, K., Kavitha, S., Santhiya, S.T., Ramesh, A.R., Suwanteerangkul, J., 2004. Interactive effects of saffron with garlic and curcumin against cyclophosphamide induced genotoxicity in mice. Asia Pac. J. Clin. Nutr., 13(3):292-294.

[32] Pulla Reddy, A.C., Lokesh, B.R., 1994. Effect of dietary turmeric (Curcuma longa) on iron induced lipid per-oxidation in the rat liver. Food Chem. Toxicol., 32(3):279-283.

[33] Rank, J., Nielsen, M.H., 1997. Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide and ethyl methane sulfonate. Mutat. Res., 390(1-2):121-127.

[34] Renner, H.W., 1984. Antimutagenic effect of an antioxidant in mammals. Mutation Research/Genetic Toxicology, 135(2):125-129.

[35] Sandhu, S.S., de Serres, F.J., Gopalan, H.N., Grant, W.F., Svendsgaard, D., Veleminsky, J., Becking, G.C., 1994. Environmental monitoring for genotoxicity with plant systems. Results and recommendations. Mutat. Res., 310(2):257-263.

[36] Shukla, Y., Arora, A., Taneja, P., 2002. Anti-mutagenic potential of curcumin on chromosomal aberrations in Wistar rats. Mutat. Res., 515:197-202.

[37] Shukla, Y., Arora, A., Taneja, P., 2003. Anti-genotoxic potential of certain dietary constituents. Teratog. Carcinog. Mutagen., 23(s1):323-335.

[38] Slamenova, D., Gabelova, A., 1980. The effects of sodium azide on mammalian cells cultivated in vitro. Mutat. Res., 71(2):253-261.

[39] Sreejayan, N., Rao, M.N., 1996. Free radical scavenging activity of curcuminoids. Arzneimittelforschung, 46:169-171.

[40] Sreejayan, N., Rao, M.N., 1997. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol., 49(1):105-107.

[41] Subramanian, M., Sreejayan, N., Rao, M.N., Devasagayam, T.P., Singh, B.B., 1994. Diminution of singlet oxygen induced DNA damage by curcumin and related antioxidants. Mutat. Res., 311(2):249-255.

[42] Sun, Y.M., Zhang, H.Y., Chen, D.Z., Liu, C.B., 2002. Theoretical elucidation on the antioxidant mechanism of curcumin: a DFT study. Org. Lett., 4(17):2909-2911.

[43] Thresiamma, K.C., George, J., Kuttan, R., 1998. Protective effect of curcumin, ellagic acid and bixin on radiation induced genotoxicity. J. Exp. Clin. Cancer Res., 17:431-446.

[44] Woo, J.H., Kim, Y.H., Choi, Y.J., Kim, D.G., Lee, K.S., Bae, J.H., Min, D.S., Chang, J.S., Jeong, Y.J., et al., 2003. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis, 24(7):1199-1208.

[45] Youssef, K.M., El-Sherbeny, M.A., 2005. Synthesis and antitumor activity of some analogs. Archiv der Pharmazie, 338(4):181-189.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE