Full Text:   <3811>

CLC number: TP391.4

On-line Access: 

Received: 2008-06-18

Revision Accepted: 2008-10-23

Crosschecked: 2009-06-10

Cited: 6

Clicked: 6234

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2009 Vol.10 No.8 P.1140-1152


Feature selection for face recognition: a memetic algorithmic approach

Author(s):  Dinesh KUMAR, Shakti KUMAR, C. S. RAI

Affiliation(s):  Department of Computer Science & Engineering, Guru Jambheshwar University of Science & Technology, Haryana 125001, India; more

Corresponding email(s):   dinesh_chutani@yahoo.com, shakti@istk.org, csrai_ipu@yahoo.com

Key Words:  Face recognition, Memetic algorithm (MA), Principal component analysis (PCA), Linear discriminant analysis (LDA), Kernel principal component analysis (KPCA), Feature selection

Dinesh KUMAR, Shakti KUMAR, C. S. RAI. Feature selection for face recognition: a memetic algorithmic approach[J]. Journal of Zhejiang University Science A, 2009, 10(8): 1140-1152.

@article{title="Feature selection for face recognition: a memetic algorithmic approach",
author="Dinesh KUMAR, Shakti KUMAR, C. S. RAI",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Feature selection for face recognition: a memetic algorithmic approach
%A Dinesh KUMAR
%A Shakti KUMAR
%A C. S. RAI
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 8
%P 1140-1152
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820460

T1 - Feature selection for face recognition: a memetic algorithmic approach
A1 - Dinesh KUMAR
A1 - Shakti KUMAR
A1 - C. S. RAI
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 8
SP - 1140
EP - 1152
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820460

The eigenface method that uses principal component analysis (PCA) has been the standard and popular method used in face recognition. This paper presents a PCA - memetic algorithm (PCA-MA) approach for feature selection. PCA has been extended by MAs where the former was used for feature extraction/dimensionality reduction and the latter exploited for feature selection. Simulations were performed over ORL and YaleB face databases using Euclidean norm as the classifier. It was found that as far as the recognition rate is concerned, PCA-MA completely outperforms the eigenface method. We compared the performance of PCA extended with genetic algorithm (PCA-GA) with our proposed PCA-MA method. The results also clearly established the supremacy of the PCA-MA method over the PCA-GA method. We further extended linear discriminant analysis (LDA) and kernel principal component analysis (KPCA) approaches with the MA and observed significant improvement in recognition rate with fewer features. This paper also compares the performance of PCA-MA, LDA-MA and KPCA-MA approaches.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Aydemir, M.E., Gunel, T., Kargin, S., Erer, I., Kurnaz, S., 2005. SAR Image Processing by a Memetic Algorithm. Proc. 2nd Int. Conf. on Recent Advances in Space Technologies, p.684-687.

[2] Bartlett, M.S., 2001. Face Image Analysis by Unsupervised Learning. Kluwer Academic Publishers, Boston.

[3] Bartlett, M.S., Lades, H.M., Sejnowski, T.J., 1998. Independent Component Representations for Face Recognition. SPIE, 3299:528-539.

[4] Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J., 1997. Eigenface vs Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell., 19(7):711-720.

[5] Bonabeau, E., Dorigo, M., Theraulaz, G., 1999. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York.

[6] Chellappa, R., Wilson, C., Sirohey, S., 1995. Human and machine recognition of faces: a survey. Proc. IEEE, 83(5):705-740.

[7] Dash, M., Liu, H., 1997. Feature selection for classification. Int. J. Intell. Data Anal., 1:131-156.

[8] Dawkins, R., 1976. The Selfish Gene. Oxford University Press, New York.

[9] Dorigo, M., Caro, G.D., 1999. Ant Colony Optimization: A New Meta-heuristic. Proc. Congress on Evolutionary Computation, 2:6-9.

[10] Dorigo, M., Stutzle, T., 2004. Ant Colony Optimization. MIT Press, Cambridge, USA.

[11] Elbeltagi, E., Hegazy, T., Grierson, D., 2005. Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inf., 19(1):43-53.

[12] Georghiades, A., Belhumeur, P., Kriegman, D., 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell., 23(6):643-660.

[13] Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Co., MA.

[14] Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer classification using support vector machines. Mach. Learn., 46(1-3):389-422.

[15] Holz, H.J., Loew, M.H., 1994. Relative Feature Importance: A Classifier Independent Approach to Feature Selection. In: Gelsema, E.S., Kanal, N.L. (Eds.), Pattern Recognition in Practice IV. Amsterdam, Elsevier, p.473-487.

[16] Hotelling, H., 1993. Analysis of a complex of statistical variables into principal components. J. Educat. Psychol., 24:417-441, 498-520.

[17] Hsu, C.N., Huang, H.J., Dietrich, S., 2004. The ANNIGMA-wrapper approach to fast feature selection for neural nets. IEEE Trans. Syst., Man, Cybern. B, 32(2):207-212.

[18] Jain, A., Zongker, D., 1997. Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell., 19(2):153-158.

[19] Kim, K.I., Jung, K., Kim, H.J., 2002. Face recognition using kernel principal component analysis. IEEE Signal Process. Lett., 9(2):40-42.

[20] Kirby, M., Sirovich, L., 1990. Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell., 12(1):103-108.

[21] Kittler, J., 1978. Feature Set Search Algorithms. In: Chen, C.H. (Ed.), Pattern Recognition and Signal Processing. Sijthoff and Noordhoff, The Netherlands, p.41-60.

[22] Kohavi, R., John, G.H., 1997. Wrapper for feature subset selection. Artif. Intell., 97(1/2):273-324.

[23] Kwak, N., Choi, C.H., 2002. Input feature selection by mutual information based on parzen window. IEEE Trans. Pattern Anal. Mach. Intell., 24(12):1667-1671.

[24] Lee, K.C., Ho, J., Kreigman, D., 2005. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell., 27(5):684-698.

[25] Mao, K.Z., 2004. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Trans. Syst., Man, Cybern. B, 34(1):60-67.

[26] Merz, P., Freisleben, B., 1997. A Genetic Local Search Approach to the Quadratic Assignment Problem. Proc. 7th Int. Conf. on Genetic Algorithms, p.465-472.

[27] Merz, P., Freisleben, B., 2000. Fitness landscape analysis and the memetic algorithms for the quadratic assignment problem. IEEE Trans. Evol. Comput., 4(4):337-352.

[28] Moscato, P., 1999. Memetic algorithms: A Short Introduction. In: Corne, D., Dorigo, M., Glover, F. (Eds.), New Ideas in Optimization. McGraw-Hill, Maidenhead, UK, p.219-234.

[29] Narendra, P.M., Fukunaga, K., 1977. A branch and bound algorithm for feature subset selection. IEEE Trans. Comput., C-26:917-922.

[30] Oh, I.S., Lee, J.S., Moon, B.R., 2004. Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell., 26(11):1424-1437.

[31] Pudil, P., Novovicova, J., Kittler, J., 1994. Floating search methods in feature selection. Pattern Recogn. Lett., 15(11):1119-1125.

[32] Schölkolf, B., Smola, A., Müller, K.R., 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neur. Comput., 10(5):1299-1319.

[33] Sheng, W.G., Howells, G., Fairhurst, M., Deravi, F., 2007. A memetic fingerprint matching algorithm. IEEE Trans. Inf. Forens. Secur., 2(3):402-412.

[34] Sheng, W.G., Liu, X.H., Fairhurst, M., 2008. A niching memetic algorithm for simultaneous clustering and feature selection. IEEE Trans. Knowl. Data Eng., 20(7):868-879.

[35] Siedlecki, W., Sklansky, J., 1989. A note on genetic algorithms for large scale feature selection. Pattern Recogn. Lett., 10(5):335-347.

[36] Swets, D.L., Weng, J.J., 1996. Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell., 18(8):831-836.

[37] Turk, M., Pentland, A., 1991. Eigenfaces for recognition. J. Cogn. Neurosci., 3(1):71-86.

[38] Xing, E., Jordan, M., Karp, R., 2001. Feature Selection for High-dimensional Genomic Microarray Data. Proc. 15th Int. Conf. on Machine Learning, p.601-608.

[39] Yan, Z., Yuan, C., 2004. Ant colony optimization for feature selection in face recognition. LNCS, 3072:221-226.

[40] Yang, M.H., Ahuja, N., Kreigman, D., 2000. Face Recognition Using Kernel Eigenfaces. Proc. Int. Conf. on Image Processing, 1:37-40.

[41] Zhao, W., Chellapa, R., Rosenfeld, A., Phillips, P.J., 2003. Face recognition: a literature survey. ACM Comput. Surv., 35(4):399-458.

[42] Zhu, Z., Ong, Y.S., 2007. Memetic algorithms for feature selection on microarray data. LNCS, 4491:1327-1335.

[43] Zhu, Z., Ong, Y.S., Dash, M., 2007. Wrapper–filter feature selection algorithm using a memetic framework. IEEE Trans. Syst., Man, Cybern. B, 37(1):70-76.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE