CLC number: TB383
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-04-12
Cited: 1
Clicked: 5874
Zhen-hai Li, Wei Yang. Injection of stored nucleotides from single-walled carbon nanotubes[J]. Journal of Zhejiang University Science A, 2010, 11(10): 709-713.
@article{title="Injection of stored nucleotides from single-walled carbon nanotubes",
author="Zhen-hai Li, Wei Yang",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="709-713",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000158"
}
%0 Journal Article
%T Injection of stored nucleotides from single-walled carbon nanotubes
%A Zhen-hai Li
%A Wei Yang
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 709-713
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000158
TY - JOUR
T1 - Injection of stored nucleotides from single-walled carbon nanotubes
A1 - Zhen-hai Li
A1 - Wei Yang
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 709
EP - 713
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000158
Abstract: We investigate the possibility of injection of a nucleotide via single-walled carbon nanotubes (SWNTs). The collapse process of an SWNT with a large radius may proceed like falling dominoes. The characteristics of a large radius SWNT are utilized to drive the nucleotide movement in the SWNT, or even to inject the stored nucleotide out of the SWNT. In this process, the lateral section of the collapsed SWNT resembles a dumbbell. Occasionally, the nucleotide in the SWNT will be inbreathed into one of the two dumbbell ends, leading to interference with the injection process. To investigate the random nature of the injection process, a series of simulations on SWNT with different lengths were carried out. It was found that the injection probability was not influenced by the tube length. Freezing the nucleotide at the beginning, or modifying the SWNT at the outlet, may serve to facilitate the injection process, as indicated by the rise in the injection probability.
[1]Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Dinola, A., Haak, J.R., 1984. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8):3684-3690.
[2]Berendsen, H.J.C., van der Spoel, D., van Drunen, R., 1995. GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3):43-56.
[3]Chang, T., 2008. Dominoes in carbon nanotubes. Physical Review Letters, 101(17):175501.
[4]Dai, Y., Tang, C., Guo, W., 2008. Simulation studies of a “nanogun” based on carbon nanotubes. Nano Research, 1(2):176-183.
[5]Duan, W.H., Wang, Q., 2010. Water transport with a carbon nanotube pump. ACS Nano, 4(4):2338-2344.
[6]Falvo, M.R., Taylor, R.M.II, Helser, A., Chi, V., Brooks, F.P.Jr., Washburn, S., Superfine, R., 1999. Nanometre-scale rolling and sliding of carbon nanotubes. Nature, 397(3):236-238.
[7]Fan, Y., Goldsmith, B.R., Collins, P.G., 2005. Identifying and counting point defects in carbon nanotubes. Nature Materials, 4(12):906-911.
[8]Gao, G., Caginy, T., Goddard, W.A.III, 1998. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology, 9(3):184-191.
[9]Gao, H., Kong, Y., Cui, D., 2003. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Letters, 3(4):471-473.
[10]Joseph, S., Aluru, N.R., 2008. Why are carbon nanotubes fast transporters of water. Nano Letters, 8(2):452-458.
[11]Kolmogorov, A.N., Crespi, V.H., 2000. Smoothest bearings interlayer sliding in multiwalled carbon nanotubes. Physical Review Letters, 85(22):4727-4730.
[12]Li, X., Yang, W., 2007. Simulating fullerene ball bearings of ultra-low friction. Nanotechnology, 18(11):115718.
[13]Lindahl, E., Hess, B., van der Spoel, D., 2001. GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8):306-317.
[14]Liu, B., Li, X., Li, B., Xu, B., Zhao, Y., 2009. Carbon nanotube based artificial water channel protein: membrane perturbation and water transportation. Nano Letters, 9(4):1386-1394.
[15]Sitharaman, B., Kissell, K.R., Hartman, K.B., Tran, L.A., Baikalov, A., Rusakova, I., Sun, Y., Khant, H.A., Ludtke, S.J., Chiu, W., et al., 2005. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chemical Communications, 3:3915-3917.
[16]Tang, T., Jagota, A., Hui, C.Y., Glassmaker, N.J., 2005. Collapse of single-walled carbon nanotubes. Journal of Applied Physics, 97(7):074310.
[17]van der Spoel, D., Lindahl, E., Hess, B., Buuren, A.R.V., Apol, E., Meulenhoff, P.J., Tieleman, D.P., Sijbers, A.L.T.M., Feenstra, K.A., Drunen, R.V., et al., 2005. Gromacs User Manual, Version 3.3. Groningen, the Netherlands. Available from http://www.gromacs.org/Documentation/Manual [Accessed on June 11, 2010].
[18]van Gunsteren, W.F., Billeter, S.R., Eising, A.A., Hünenberger, P.H., Krüger, P., Mark, A.E., Scott, W.R.P., Tironi, I.G., 1996. Biomolecular Simulation: The GROMOS96 Manual and User Guide. Hochschulverlag AG an der ETH Zürich, Zürich, Switzerland.
[19]Walther, J.H., Jaffe, R., Halicioglu, T., Koumoutsakos, P., 2001. Carbon nanotubes in water: structural characteristics and energetics. The Journal of Physical Chemistry B, 105(41):9980-9987.
[20]Wang, Q., 2009. Atomic transportation via carbon nanotubes. Nano Letters, 9(1):245-249.
[21]Yeh, I.C., Hummer, G., 2004. Nucleic acid transport through carbon nanotube membranes. PNAS, 101(33):12177-12182.
Open peer comments: Debate/Discuss/Question/Opinion
<1>