CLC number: O471.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-12-10
Cited: 0
Clicked: 5245
Fang Lin. Physical properties of the junction of scandium and carbon nanotubes[J]. Journal of Zhejiang University Science A, 2011, 12(4): 255-259.
@article{title="Physical properties of the junction of scandium and carbon nanotubes",
author="Fang Lin",
journal="Journal of Zhejiang University Science A",
volume="12",
number="4",
pages="255-259",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000258"
}
%0 Journal Article
%T Physical properties of the junction of scandium and carbon nanotubes
%A Fang Lin
%J Journal of Zhejiang University SCIENCE A
%V 12
%N 4
%P 255-259
%@ 1673-565X
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000258
TY - JOUR
T1 - Physical properties of the junction of scandium and carbon nanotubes
A1 - Fang Lin
J0 - Journal of Zhejiang University Science A
VL - 12
IS - 4
SP - 255
EP - 259
%@ 1673-565X
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000258
Abstract: Using first-principles calculations, the contact between the scandium (Sc) and semiconducting carbon nanotube (CNT) is investigated. This is one of the best quality of n-type contacts. Two junction models with (8,0) CNT on low-index Sc surfaces are constructed to elucidate the structural and electronic properties of Sc/CNT junctions. Analyses based on density of states and charge difference reveal that strong chemical bonds are formed between Sc and C atoms due to hybrid states of Sc 3d state and C 2π state. With respect to Ti(0001)/CNT junction, we find the dipole layer formed at the interface of Sc(0001)/CNT is comparable with that of Ti(0001)/CNT but gives a negative barrier at the interface. This indicates that the excellent contact properties of Sc metal electrode are caused by its low work function and excellent binding with CNT.
[1]Avouris, P., Chen, Z.H., Perebeinos, V., 2007. Carbon-based electronics. Nature Nanotechnology, 2(10):605-615.
[2]Charlier, J.C., Blase, X., Roche, S., 2007. Electronic and transport properties of nanotubes. Reviews of Modern Physics, 79(2):677-732.
[3]Chen, Z.H., Appenzeller, J., Knoch, J., Lin, Y.M., Avouris, P., 2005. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Letters, 5(7):1497-1502.
[4]Dai, H.J., Javey, A., Pop, E., Mann, D., Kim, W., Lu, Y.R., 2006. Electrical transport properties and field-effect transistors of carbon nanotubes. Nano, 1(1):1-13.
[5]Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J., Avouris, P., 2002. Carbon nanotubes as Schottky barrier transistors. Physical Review Letters, 89(10):106801.
[6]Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.J., 2003. Ballistic carbon nanotube field-effect transistors. Nature, 424(6949):654-657.
[7]Krasnov, P.O., Ding, F., Singh, A.K., Yakobson, B.I., 2007. Clustering of Sc on SWNT and reduction of hydrogen uptake: ab-initio all-electron calculations. Journal of Physical Chemistry C, 111(49):17977-17980.
[8]Kresse, G., Furthmuller, J., 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16):11169-11186.
[9]Kuzubov, A.A., Krasnov, P.O., Kozhevnikov, T.A., Popov, M.N., 2009. Calculation of the energy of binding of titanium and scandium complexes to the surface of carbon nanotubes. Russian Journal of Physical Chemistry B, 3(4):679-683.
[10]Monkhorst, H.J., Pack, J.D., 1976. Special points for Brillouin-zone integrations. Physical Review B, 13(12):5188-5192.
[11]Nemec, N., Tomanek, D., Cuniberti, G., 2006. Contact dependence of carrier injection in carbon nanotubes: an ab initio study. Physical Review Letters, 96(7):076802.
[12]Okada, S., Oshiyama, A., 2005. Electronic structure of semiconducting nanotubes adsorbed on metal surfaces. Physical Review Letters, 95(20):206804.
[13]Perdew, J.P., Wang, Y., 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23):13244-13249.
[14]Shan, B., Cho, K., 2004. Ab initio study of Schottky barrier at metal-nanotube contacts. Physical Review B, 70(23):233405.
[15]Sze, S.M., Ng, K.K., 2007. Physics of Semiconductor Devices (3rd Ed.). John Wiley & Sons, New Jersey, USA, p.137.
[16]Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11):7892-7895.
[17]Vitale, V., Curioni, A., Andreoni, W., 2008. Metal carbon nanotube contacts: the link between Schottky barrier and chemical bonding. Journal of the American Chemical Society, 130(18):5848-5849.
[18]Zhang, Z.Y., Liang, X.L., Wang, S., Yao, K., Hu, Y.F., Zhu, Y.Z., Chen, Q., Zhou, W.W., Li, Y., Yao, Y.G., et al., 2007. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Letters, 7(12):3603-3607.
[19]Zhang, Z.Y., Wang, S., Ding, L., Liang, X.L., Pei, T., Shen, J., Xu, H.L., Chen, Q., Cui, R.L., Li, Y., et al., 2008. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Letters, 8(11):3696-3701.
[20]Zhu, W.G., Kaxiras, E., 2006. The nature of contact between Pd leads and semiconducting carbon nanotubes. Nano Letters, 6(7):1415-1419.
Open peer comments: Debate/Discuss/Question/Opinion
<1>