CLC number: TH133.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-03-06
Cited: 7
Clicked: 9416
Zhong-xiu Fei, Shui-guang Tong, Chao Wei. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method[J]. Journal of Zhejiang University Science A, 2013, 14(4): 268-280.
@article{title="Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method",
author="Zhong-xiu Fei, Shui-guang Tong, Chao Wei",
journal="Journal of Zhejiang University Science A",
volume="14",
number="4",
pages="268-280",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200298"
}
%0 Journal Article
%T Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method
%A Zhong-xiu Fei
%A Shui-guang Tong
%A Chao Wei
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 4
%P 268-280
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200298
TY - JOUR
T1 - Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method
A1 - Zhong-xiu Fei
A1 - Shui-guang Tong
A1 - Chao Wei
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 4
SP - 268
EP - 280
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200298
Abstract: Recently, the finite element method (FEM) has been commonly applied in the engineering analysis of rotor dynamics. Gyroscopic moments, rotary inertia, transverse shear deformation and gravity can be included in computational models of rotor-bearing systems. In this paper, a finite element model and its solution method are presented for the calculation of the dynamics of dual rotor systems. A typical structure with two rotor shafts is discussed and the procedure for obtaining the coupling motion equations of the subsystems is illustrated. A computer program is developed to solve critical speeds and to simulate the transient motion. The influence of gyroscopic moments on co-rotation and counter-rotation is analyzed, and the effect of the speed ratio on critical speed is studied. The dynamic characteristics under different conditions of increasing speed during start-up are demonstrated by comparison with transient nodal displacements. The presented model provides a complete foundation for further investigation of the dynamics of dual rotor systems.
Open peer comments: Debate/Discuss/Question/Opinion
<1>