Full Text:   <3991>

CLC number: TH133.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-03-06

Cited: 7

Clicked: 9416

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.4 P.268-280

http://doi.org/10.1631/jzus.A1200298


Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method


Author(s):  Zhong-xiu Fei1, Shui-guang Tong2, Chao Wei3

Affiliation(s):  1. Institute of Chemical Machinery Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   feizhongxiu@zju.edu.cn

Key Words:  Dual rotor system, Critical speed, Transient response, Finite element method (FEM)


Zhong-xiu Fei, Shui-guang Tong, Chao Wei. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method[J]. Journal of Zhejiang University Science A, 2013, 14(4): 268-280.

@article{title="Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method",
author="Zhong-xiu Fei, Shui-guang Tong, Chao Wei",
journal="Journal of Zhejiang University Science A",
volume="14",
number="4",
pages="268-280",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200298"
}

%0 Journal Article
%T Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method
%A Zhong-xiu Fei
%A Shui-guang Tong
%A Chao Wei
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 4
%P 268-280
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200298

TY - JOUR
T1 - Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method
A1 - Zhong-xiu Fei
A1 - Shui-guang Tong
A1 - Chao Wei
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 4
SP - 268
EP - 280
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200298


Abstract: 
Recently, the finite element method (FEM) has been commonly applied in the engineering analysis of rotor dynamics. Gyroscopic moments, rotary inertia, transverse shear deformation and gravity can be included in computational models of rotor-bearing systems. In this paper, a finite element model and its solution method are presented for the calculation of the dynamics of dual rotor systems. A typical structure with two rotor shafts is discussed and the procedure for obtaining the coupling motion equations of the subsystems is illustrated. A computer program is developed to solve critical speeds and to simulate the transient motion. The influence of gyroscopic moments on co-rotation and counter-rotation is analyzed, and the effect of the speed ratio on critical speed is studied. The dynamic characteristics under different conditions of increasing speed during start-up are demonstrated by comparison with transient nodal displacements. The presented model provides a complete foundation for further investigation of the dynamics of dual rotor systems.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Abduljabbar, Z., ElMadany, M.M., AlAbdulwahab, A.A., 1996. Active vibration control of a flexible rotor. Computers and Structures, 58(3):499-511. 


[2] Adhikari, S., 1999. Modal analysis of linear asymmetric non-conservative systems. Journal of Engineering Mechanics, 125(12):1372-1379. 


[3] Adhikari, S., 2000. On symmetrizable systems of second kind. ASME Journal of Applied Mechanics, 67(4):797-802. 


[4] Bathe, K.J., 1996.  Finite Element Procedures. Prentice-Hall Inc.,New Jersey :768-784. 

[5] Carrella, A., Friswell, M.I., Zotov, A., Ewins, D.J., Tichonov, A., 2009. Using nonlinear springs to reduce the whirling of a rotating shaft. Mechanical Systems and Signal Processing, 23(7):2228-2235. 


[6] Das, A.S., Nighil, M.C., Dutt, J.K., Irretier, H., 2008. Vibration control and stability analysis of rotor-shaft system with electromagnetic exciters. Mechanism and Machine Theory, 43(10):1295-1316. 


[7] Friswell, M.I., Dutt, J.K., Adhikari, S., Lees, A.W., 2010. Time domain analysis of a viscoelastic rotor using internal variable models. International Journal of Mechanical Sciences, 52(10):1319-1324. 


[8] Garadin, M., Kill, N., 1983. A new approach to finite element modeling of flexible rotors. Engineering Computations, 1(1):52-64. 


[9] Chiang, H.W.D., Hsu, C.N., Jeng, W., 2002. Turbomachinery Dual Rotor-Bearing System Analysis. ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam, the Netherlands :803-810. 


[10] Jei, Y.G., Lee, C.W., 1988. Finite element model of asymmetrical rotor-bearing systems. Journal of Mechanical Science and Technology, 2(2):116-124. 


[11] Lalanne, M., Ferraris, G., 1990.  Rotor Dynamics Prediction in Engineering. Wiley,New York :77-116. 

[12] Lee, A.S., Ha, J.W., Choi, D.H., 2003. Coupled lateral and torsional vibration characteristics of a speed increasing geared rotor-bearing system. Journal of Sound and Vibration, 263(4):725-742. 


[13] Nelson, H.D., 1980. A finite rotating shaft element using Timoshenko beam theory. ASME Journal of Mechanical Design, 102(4):793-803. 


[14] Nelson, H.D., Mc-Vaugh, J.M., 1976. The dynamics of rotor-bearing systems using finite elements. ASME Journal of Engineering for Industry, 98(2):593-600. 


[15] Newmark, N.M., 1959. A method of computation for structural dynamics. ASCE Journal of Engineering Mechanics, 85(3):67-94. 

[16] Rajan, M., Nelson, H.D., Chen, W.J., 1986. Parameter sensitivity in the dynamics of rotor-bearing systems. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 108(2):197-206. 


[17] Rao, J.S., 1996.  Rotor Dynamics (3rd Ed.). New Age International Publishers,London :69-106. 

[18] Rao, J.S., Shiau, T.N., Chang, J.R., 1998. Theoretical analysis of lateral response due to torsional excitation of geared rotors. Mechanism and Machine Theory, 33(6):761-783. 


[19] Shiau, T.N., Rao, J.S., Chang, J.R., Choi, S.T., 1999. Dynamic behavior of geared rotors. ASME Journal of Engineering for Gas Turbines and Power, 121(3):494-503. 


[20] Zhong, Y.E., 1987.  Rotor Dynamics. (in Chinese), Tsinghua University Press,Beijing, China :176-195. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE