Full Text:   <858>

Summary:  <905>

CLC number: TN75

On-line Access: 2021-03-10

Received: 2020-05-02

Revision Accepted: 2020-07-18

Crosschecked: 2021-01-14

Cited: 0

Clicked: 1277

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Sajad Jafari

https://orcid.org/0000-0002-6845-7539

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2021 Vol.22 No.3 P.235-244

http://doi.org/10.1631/jzus.A2000205


Chimera state in a network of nonlocally coupled impact oscillators


Author(s):  Jerzy Wojewoda, Karthikeyan Rajagopal, Viet-Thanh Pham, Fatemeh Parastesh, Tomasz Kapitaniak, Sajad Jafari

Affiliation(s):  Division of Dynamics, Lodz University of Technology, Lodz 90-924, Poland; more

Corresponding email(s):   sajadjafari83@gmail.com

Key Words:  Mechanical oscillators, Impact oscillator, Coupled network, Nonlocal coupling, Chimera state


Share this article to: More <<< Previous Article|

Jerzy Wojewoda, Karthikeyan Rajagopal, Viet-Thanh Pham, Fatemeh Parastesh, Tomasz Kapitaniak, Sajad Jafari. Chimera state in a network of nonlocally coupled impact oscillators[J]. Journal of Zhejiang University Science A, 2021, 22(3): 235-244.

@article{title="Chimera state in a network of nonlocally coupled impact oscillators",
author="Jerzy Wojewoda, Karthikeyan Rajagopal, Viet-Thanh Pham, Fatemeh Parastesh, Tomasz Kapitaniak, Sajad Jafari",
journal="Journal of Zhejiang University Science A",
volume="22",
number="3",
pages="235-244",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2000205"
}

%0 Journal Article
%T Chimera state in a network of nonlocally coupled impact oscillators
%A Jerzy Wojewoda
%A Karthikeyan Rajagopal
%A Viet-Thanh Pham
%A Fatemeh Parastesh
%A Tomasz Kapitaniak
%A Sajad Jafari
%J Journal of Zhejiang University SCIENCE A
%V 22
%N 3
%P 235-244
%@ 1673-565X
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000205

TY - JOUR
T1 - Chimera state in a network of nonlocally coupled impact oscillators
A1 - Jerzy Wojewoda
A1 - Karthikeyan Rajagopal
A1 - Viet-Thanh Pham
A1 - Fatemeh Parastesh
A1 - Tomasz Kapitaniak
A1 - Sajad Jafari
J0 - Journal of Zhejiang University Science A
VL - 22
IS - 3
SP - 235
EP - 244
%@ 1673-565X
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000205


Abstract: 
chimera state is a peculiar spatiotemporal pattern, wherein the coherence and incoherence coexist in the network of coupled identical oscillators. In this paper, we study the chimera states in a network of impact oscillators with nonlocal coupling. We investigate the effects of the coupling strength and the coupling range on the network behavior. The results reveal the emergence of the chimera state for significantly small values of coupling strength, and higher coupling strength values lead to unbounded motions in the oscillators. We also study the network in the case of excitation failure. We observe that the coupling helps in the maintenance of an oscillatory motion with a lower amplitude in the failed oscillator.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abrams DM, Strogatz SH, 2004. Chimera states for coupled oscillators. Physical Review Letters, 93(17):174102.

[2]Arenas A, Díaz-Guilera A, Kurths J, et al., 2008. Synchronization in complex networks. Physics Reports, 469(3):93-153.

[3]Banerjee S, Ing J, Pavlovskaia E, et al., 2009. Invisible grazings and dangerous bifurcations in impacting systems: the problem of narrow-band chaos. Physical Review E, 79(3):037201.

[4]Bera BK, Ghosh D, Banerjee T, 2016. Imperfect traveling chimera states induced by local synaptic gradient coupling. Physical Review E, 94(1):012215.

[5]Bera BK, Majhi S, Ghosh D, et al., 2017. Chimera states: effects of different coupling topologies. EPL (Europhysics Letters), 118(1):10001.

[6]Bera BK, Rakshit S, Ghosh D, et al., 2019. Spike chimera states and firing regularities in neuronal hypernetworks. Chaos, 29(5):053115.

[7]Blazejczyk-Okolewska B, Kapitaniak T, 1998. Co-existing attractors of impact oscillator. Chaos, Solitons & Fractals, 9(8):1439-1443.

[8]Dudkowski D, Maistrenko Y, Kapitaniak T, 2016. Occurrence and stability of chimera states in coupled externally excited oscillators. Chaos, 26(11):116306.

[9]Dudkowski D, Czolczynski K, Kapitaniak T, 2019. Traveling chimera states for coupled pendula. Nonlinear Dynamics, 95(3):1859-1866.

[10]Hart JD, Bansal K, Murphy TE, et al., 2016. Experimental observation of chimera and cluster states in a minimal globally coupled network. Chaos, 26(9):094801.

[11]Ing J, Pavlovskaia E, Wiercigroch M, et al., 2010. Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing. Physica D: Nonlinear Phenomena, 239(6):312-321.

[12]Kapitaniak M, Lazarek M, Nielaczny M, et al., 2014. Synchronization extends the life time of the desired behavior of globally coupled systems. Scientific Reports, 4(1):4391.

[13]Kapitaniak T, Kuzma P, Wojewoda J, et al., 2014. Imperfect chimera states for coupled pendula. Scientific Reports, 4(1):6379.

[14]Kundu S, Bera BK, Ghosh D, et al., 2019. Chimera patterns in three-dimensional locally coupled systems. Physical Review E, 99(2):022204.

[15]Kuramoto Y, Battogtokh D, 2002. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenomena in Complex Systems, 5(4):380-385.

[16]Lee JY, 2005. Motion behavior of impact oscillator. Journal of Marine Science and Technology, 13(2):89-96.

[17]Lee JY, Yan JJ, 2006. Control of impact oscillator. Chaos, Solitons & Fractals, 28(1):136-142.

[18]Liu YJ, Khalaf AJM, Jafari S, et al., 2019. Chimera state in a two-dimensional network of coupled genetic oscillators. EPL (Europhysics Letters), 127(4):40001.

[19]Ma J, Xu Y, Ren GD, et al., 2016. Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dynamics, 84(2):497-509.

[20]Maistrenko Y, Brezetsky S, Jaros P, et al., 2017. Smallest chimera states. Physical Review E, 95(1):010203.

[21]Majhi S, Perc M, Ghosh D, 2016. Chimera states in uncoupled neurons induced by a multilayer structure. Scientific Reports, 6(1):39033.

[22]Majhi S, Bera BK, Ghosh D, et al., 2019. Chimera states in neuronal networks: a review. Physics of Life Reviews, 28:100-121.

[23]Martens EA, Thutupalli S, Fourriere A, et al., 2013. Chimera states in mechanical oscillator networks. Proceedings of the National Academy of Sciences of the United States of America, 110(26):10563-10567.

[24]Omelchenko I, Provata A, Hizanidis J, et al., 2015. Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Physical Review E, 91(2):022917.

[25]Panaggio MJ, Abrams DM, Ashwin P, et al., 2016. Chimera states in networks of phase oscillators: the case of two small populations. Physical Review E, 93(1):012218.

[26]Pavlovskaia E, Ing J, Wiercigroch M, et al., 2010. Complex dynamics of bilinear oscillator close to grazing. International Journal of Bifurcation and Chaos, 20(11):3801-3817.

[27]Pham VT, Volos C, Jafari S, et al., 2014. Constructing a novel no-equilibrium chaotic system. International Journal of Bifurcation and Chaos, 24(5):1450073.

[28]Rakshit S, Bera BK, Perc M, et al., 2017. Basin stability for chimera states. Scientific Reports, 7(1):2412.

[29]Suda Y, Okuda K, 2015. Persistent chimera states in nonlocally coupled phase oscillators. Physical Review E, 92(6):060901.

[30]Tang J, Zhang J, Ma J, et al., 2019. Noise and delay sustained chimera state in small world neuronal network. Science China Technological Sciences, 62(7):1134-1140.

[31]Tinsley MR, Nkomo S, Showalter K, 2012. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nature Physics, 8(9):662-665.

[32]Vadivasova TE, Strelkova GI, Bogomolov SA, et al., 2016. Correlation analysis of the coherence-incoherence transition in a ring of nonlocally coupled logistic maps. Chaos, 26(9):093108.

[33]Wang CN, Ma J, 2018. A review and guidance for pattern selection in spatiotemporal system. International Journal of Modern Physics B, 32(06):1830003.

[34]Wang Z, Baruni S, Parastesh F, et al., 2020. Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity. Neurocomputing, 406:117-126.

[35]Wei ZC, Sprott JC, Chen H, 2015a. Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium. Physics Letters A, 379(37):2184-2187.

[36]Wei ZC, Zhang W, Yao MH, 2015b. On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system. Nonlinear Dynamics, 82(3):1251-1258.

[37]Wei ZC, Pham VT, Kapitaniak T, et al., 2016. Bifurcation analysis and circuit realization for multiple-delayed Wang-Chen system with hidden chaotic attractors. Nonlinear Dynamics, 85(3):1635-1650.

[38]Wei ZC, Moroz I, Sprott JC, et al., 2017a. Detecting hidden chaotic regions and complex dynamics in the selfexciting homopolar disc dynamo. International Journal of Bifurcation and Chaos, 27(2):1730008.

[39]Wei ZC, Moroz I, Sprott JC, et al., 2017b. Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. Chaos, 27(3):033101.

[40]Wei ZC, Pham VT, Khalaf AJM, et al., 2018a. A modified multistable chaotic oscillator. International Journal of Bifurcation and Chaos, 28(7):1850085.

[41]Wei ZC, Parastesh F, Azarnoush H, et al., 2018b. Nonstationary chimeras in a neuronal network. EPL (Europhysics Letters), 123(4):48003.

[42]Wiercigroch M, Sin VWT, 1998. Experimental study of a symmetrical piecewise base-excited oscillator. Journal of Applied Mechanics, 65(3):657-663.

[43]Yao YG, Deng HY, Yi M, et al., 2017. Impact of bounded noise on the formation and instability of spiral wave in a 2D lattice of neurons. Scientific Reports, 7(1):43151.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE