Full Text:   <1636>

CLC number: Q78

On-line Access: 

Received: 2008-04-01

Revision Accepted: 2008-09-23

Crosschecked: 2008-11-17

Cited: 20

Clicked: 4239

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2008 Vol.9 No.12 P.938~943


QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content

Author(s):  Da-wei XUE, Ming-can CHEN, Mei-xue ZHOU, Song CHEN, Ying MAO, Guo-ping ZHANG

Affiliation(s):  Agronomy Department, Zhejiang University, Hangzhou 310029, China; more

Corresponding email(s):   zhanggp@zju.edu.cn

Key Words:  Barley (Hordeum vulgare L.), Double haploid (DH), Flag leaf, Quantitative trait loci (QTL)

Da-wei XUE, Ming-can CHEN, Mei-xue ZHOU, Song CHEN, Ying MAO, Guo-ping ZHANG. QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content[J]. Journal of Zhejiang University Science B, 2008, 9(12): 938~943.

@article{title="QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content",
author="Da-wei XUE, Ming-can CHEN, Mei-xue ZHOU, Song CHEN, Ying MAO, Guo-ping ZHANG",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content
%A Da-wei XUE
%A Ming-can CHEN
%A Mei-xue ZHOU
%A Song CHEN
%A Ying MAO
%A Guo-ping ZHANG
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 12
%P 938~943
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820105

T1 - QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content
A1 - Da-wei XUE
A1 - Ming-can CHEN
A1 - Mei-xue ZHOU
A1 - Song CHEN
A1 - Ying MAO
A1 - Guo-ping ZHANG
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 12
SP - 938
EP - 943
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820105

To understand genetic patterns of the morphological and physiological traits in flag leaf of barley, a double haploid (DH) population derived from the parents Yerong and Franklin was used to determine quantitative trait loci (QTL) controlling length, width, length/width, and chlorophyll content of flag leaves. A total of 9 QTLs showing significantly additive effect were detected in 8 intervals on 5 chromosomes. The variation of individual QTL ranged from 1.9% to 20.2%. For chlorophyll content expressed as SPAD value, 4 QTLs were identified on chromosomes 2H, 3H and 6H; for leaf length and width, 2 QTLs located on chromosomes 5H and 7H, and 2 QTLs located on chromosome 5H were detected; and for length/width, 1 QTL was detected on chromosome 7H. The identification of these QTLs associated with the properties of flag leaf is useful for barley improvement in breeding programs.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Araus, J.I., Bort, J., Ceccarelli, S., Grando, S., 1997. Relationship between leaf structure and carbon isotope discrimination in field grown barley. Plant Physiology and Biochemistry, 35(7):533-541.

[2] Backes, G., Graner, A., Foroughi-Wehr, B., Fischbeck, G., Wenzel, G., Jahoor, A., 1995. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of an RFLP map in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 90(2):294-302.

[3] Baum, M., Grando, S., Backes, G., Jahoor, A., Sabbagh, A., Ceccarelli, S., 2003. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’×H. spontaneum 41-1. Theoretical and Applied Genetics, 107(7):1215-1225.

[4] Bezant, J., Laurie, D., Pratchett, N., Chojecki, J., Kearsey, M., 1997. Mapping QTLs controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Molecular Breeding, 3(1):29-38.

[5] Chen, W., Xu, Z., Zhang, L., 1995. Physiological Bases of Super High Yield Breeding in Rice. Liaoning Science and Technology Publishing Company, Shenyang, p.1-2 (in Chinese).

[6] FAO (Food and Agriculture Organization of the United Nations), 2005. FAOSTAT. http://faostat.fao.org/

[7] Guo, P., Baum, M., Varshney, R., Graner, A., Grando, S., Ceccarelli, S., 2008. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 163(2):203-214.

[8] Gyenis, L., Yun, S.J., Smith, K.P., Steffenson, B.J., Bossolini, E., Sanguineti, M.C., Muehlbauer, G.J., 2007. Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome, 50(8):714-723.

[9] Hirota, O., Oka, M., Takeda, T., 1990. Sink activity estimation by sink size and dry matter increase during the ripening stage of barley (Hordeum vulgare) and rice (Oryza sativa). Annals of Botany, 65(4):349-354.

[10] Kang, H.J., Cho, Y.G., Lee, Y.T., Eun, M.Y., 1999. Mapping QTLs for Flag Leaf Length and Width, Panicle Exertion Length, and Awn Length Using Recombinant Inbred Population of Rice (Oryza sativa L.). Plant & Animal Genome VII Conference. Town & Country Hotel, San Diego, p.309.

[11] Kjaer, B., Jensen, J., 1996. Quantitative trait loci for grain yield and yield components in a cross between a six-rowed and a two-rowed barley. Euphytica, 90(1):39-48.

[12] Kobayashi, S., Fukuta, Y., Morita, S., Sato, T., Osaki, M., Khush, G.S., 2003. Quantitative trait loci affecting flag leaf development in rice (Oryza sativa L.). Breeding Science, 53(3):255-262.

[13] Li, H., Vaillancourt, R.E., Zhou, M., Mendham, N.J., Wenzl, P., Huttner, E., Kilian, A., 2006. Large-scale Segregation Distortion in Barley Revealed by a Genetic Map Based on DArT, AFLP and SSR Markers. Proceedings of the 13th Australasian Plant Breeding Conference. 18-21 April, Christchurch, New Zealand, p.660-665.

[14] Li, J.Z., Huang, X.Q., Heinrich, F., Ganal, M.W., Röder, M.S., 2005. Analysis of quantitative trait loci for yield, yield components and malting quality in a BC3-DH population of spring barley. Theoretical and Applied Genetics, 110(2):356-363.

[15] Li, J.Z., Huang, X.Q., Heinrichs, F., Ganal, M.W., Röder, M.S., 2006. Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome, 49(5):454-466.

[16] Li, S.G., He, P., Wang, Y.P., Li, H.Y., Chen, Y., Zhou, K.D., Zhu, L.H., 2000. Genetic analysis and gene mapping of the leaf traits in rice (Oryza sativa L.). Acta Agronomica Sinica, 26(3):261-265 (in Chinese).

[17] Li, Z., Pinson, S.R.M., Stansel, J.W., Paterson, A.H., 1998. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Molecular Breeding, 4(5):419-426.

[18] Marquez-Cedillo, L.A., Hayes, P.M., Kleinhofs, A., Legge, W.G., Rossnagel, B.G., Sato, K., Ullrich, S.E., Wesenberg, D.M., 2001. QTL analysis of agronomic traits in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theoretical and Applied Genetics, 103(4):625-637.

[19] Mather, D., Tinker, N.A., LaBerge, D.E., Edney, M., Jones, B.L., Rossnagel, B.G., Legge, W.G., Briggs, K.G., Irvine, R.B., Falk, D.E., et al., 1997. Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Science, 37(2):544-554.

[20] McCouch, S.R., Cho, Y.G., Yano, M., Paul, E., Blinstrub, M., 1997. Report on QTL nomenclature. Rice Genetics Newsletter, 14:11-13.

[21] Mei, H.W., Luo, L.J., Ying, C.S., Wang, Y.P., Yu, X.Q., Guo, L.B., Paterson, A.H., Li, Z.K., 2005. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theoretical and Applied Genetics, 110(4):649-659.

[22] Sameri, M., Takeda, K., Komatsuda, T., 2006. Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental- and occidental-type barley cultivars. Breeding Science, 56(3):243-252.

[23] Sharma, S.N., Sain, R.S., Sharma, R.K., 2003. The genetic control of the flag leaf length in normal and late sown durum wheat. The Journal of Agricultural Science, 141(3-4):323-331.

[24] Sicher, R.C., 1993. Assimilate PARTITIONIng within Leaves of Small Grain Cereals. In: Yash, P.A., Prasanna, M., Govindjee, D. (Eds.), Photosynthesis Photoreactions to Plant Productivity. Kluwer Academic Publishers, Dordrecht, the Netherlands, p.351-360.

[25] Teng, S., Qian, Q., Zeng, D., Kunihiro, Y., Fujimoto, K., Huang, D., Zhu, L., 2004. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica, 135(1):1-7.

[26] This, D., Borries, C., Souyris, I., Teulat, B., 2000. QTL study of chlorophyll content as a genetic parameter of drought tolerance in barley. Barley Genetics Newsletter, 30:20-23.

[27] Thomas, W.T.B., Powell, W., Waugh, R., Chalmers, K.J., Barua, U.M., Jack, P., Lea, V., Forster, B.P., Swanston, J.S., Ellis, R.P., Hanson, P.R., 1995. Detection of quantitative trait loci for agronomic, yield, grain, and disease characters in spring barley (Hordeum vulgare L). Theoretical and Applied Genetics, 91(6-7):1037-1047.

[28] Thorne, G.N., 1965. Photosynthesis of ear and flag leaves of wheat and barley. Annals of Botany, 29(3):317-329.

[29] Tungland, L., Chapko, L.B., Wiersma, J.V., Rasmusson, D.C., 1987. Effect of erect leaf angle on grain yield in barley. Crop Science, 27(1):37-40.

[30] Wang, D.L., Zhu, J., Li, Z.K., Paterson, A.H., 1999. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theoretical and Applied Genetics, 99(7-8):1255-1264.

[31] Wang, D.L., Zhu, J., Li, Z.K., Paterson, A.H., 2003. QTLMapper Version 1.6: A Computer Software for Mapping Quantitative Trait Loci (QTLs) with Additive Effects, Epistatic Effects and QTL×Environment Interactions. http://ibi.zju.edu.cn/software/qtlmapper/index.htm

[32] Wenzl, P., Li, H., Carling, J., Zhou, M., Raman, H., Paul, E., Hearnden, P., Maier, C., Xia, L., Caig, V., et al., 2006. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics, 7(1):206.

[33] Yang, Y.F., Lu, D.Z., 1991. Genetic analysis on morpho-physiological traits of barley flag leaf. Scientia Agricultura Sinica, 24(1):20-26 (in Chinese).

[34] Yap, T.C., Harvey, R.L., 1972. Relations between grain yield and photosynthetic parts above the flag leaf node in barley. Canadian Journal of Plant Science, 52:241-246.

[35] Yin, X., Stam, P., Johan Dourleijn, C., Kropff, M.J., 1999. AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theoretical and Applied Genetics, 99(1-2):244-253.

[36] Yue, B., Xue, W.Y., Luo, L.J., Xing, Y.Z., 2006. QTL analysis for flag leaf characteristics and their relationship with yield and yield traits in rice. Acta Genetica Sinica, 33(9):824-832.

[37] Zheng, T., 1999. Effects of some photosynthetic organs on milking and grain yield of barley. Barley Science, 1:21-22 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion



2010-08-03 21:00:11

In general, the study is sound and brings useful information to the scientific community.
The overall quality of the paper is satisfactory and authors provide interesting data for a plant breeder willing to improve such traits in barley, not as a general information but rather as a comparison point to be linked with other data.

Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE