CLC number: Q96; Q51
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-01-07
Cited: 7
Clicked: 6184
Jia-ying Zhu, Qi Fang, Gong-yin Ye, Cui Hu. Proteome changes in the plasma of Pieris rapae parasitized by the endoparasitoid wasp Pteromalus puparum[J]. Journal of Zhejiang University Science B, 2011, 12(2): 93-102.
@article{title="Proteome changes in the plasma of Pieris rapae parasitized by the endoparasitoid wasp Pteromalus puparum",
author="Jia-ying Zhu, Qi Fang, Gong-yin Ye, Cui Hu",
journal="Journal of Zhejiang University Science B",
volume="12",
number="2",
pages="93-102",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000158"
}
%0 Journal Article
%T Proteome changes in the plasma of Pieris rapae parasitized by the endoparasitoid wasp Pteromalus puparum
%A Jia-ying Zhu
%A Qi Fang
%A Gong-yin Ye
%A Cui Hu
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 2
%P 93-102
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000158
TY - JOUR
T1 - Proteome changes in the plasma of Pieris rapae parasitized by the endoparasitoid wasp Pteromalus puparum
A1 - Jia-ying Zhu
A1 - Qi Fang
A1 - Gong-yin Ye
A1 - Cui Hu
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 2
SP - 93
EP - 102
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000158
Abstract: parasitism by the endoparasitoid wasp Pteromalus puparum causes alterations in the plasma proteins of Pieris rapae. Analysis of plasma proteins using a proteomic approach showed that seven proteins were differentially expressed in the host pupae after 24-h parasitism. They were masquerade-like serine proteinase homolog (MSPH), enolase (Eno), bilin-binding protein (BBP), imaginal disc growth factor (IDGF), ornithine decarboxylase (ODC), cellular retinoic acid binding protein (CRABP), and one unknown function protein. The full length cDNA sequences of MSPH, Eno, and BBP were successfully cloned using rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that the transcript levels of MSPH and BBP in the fat bodies of host pupae were inducible in response to the parasitism and their variations were consistent with translational changes of these genes after parasitism, while the transcript levels of Eno and IDGF were not affected by parasitism. This study will contribute to the better understanding of the molecular bases of parasitoid-induced host alterations associated with innate immune responses, detoxification, and energy metabolism.
[1]Amparyup, P., Jitvaropas, R., Pulsook, N., Tassanakajon, A., 2007. Molecular cloning, characterization and expression of a masquerade-like serine proteinase homologue from black tiger shrimp Penaeus monodon. Fish Shellfish Immunol., 22(5):535-546.
[2]Asgari, S., 2006. Venom proteins from polydnavrus-producing endoparasitoids: their role in host-parasite interactions. Arch. Insect Biochem. Physiol., 61(3):146-156.
[3]Ashida, M., Brey, P.T., 1998. Recent Advances on the Research of the Insect Prophenoloxidase Cascade. In: Brey, P.T., Hultmark, D. (Eds.), Molecular Mechanisms of Immune Responses in Insects. Chapman and Hall, London, p.135-172.
[4]Beckage, N.E., Gelman, D.B., 2004. Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu. Rev. Entomol., 49(1):299-330.
[5]Brandt, S.L., Coudron, T.A., Jones, D., Racquib, A., 1996. Regulation of storage protein production in envenomated host larvae parasitized by Euplectrus sp. (Hymenoptera: Eulophidae). Toxicon, 34(3):328-329.
[6]Cai, J., Ye, G.Y., Hu, C., 2004. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes. J. Insect Physiol., 50(4):315-322.
[7]Carton, Y., Nappi, A.J., 2001. Immunogenetic aspects of the cellular immune response of Drosophilia against parasitoids. Immunogenetics, 52(3-4):157-164.
[8]Consoli, F.L., Vinson, S.B., 2004. Host regulation and the embryonic development of the endoparasitoid Toxoneuron nigriceps (Hymenoptera: Braconidae). Comp. Biochem. Physiol. B, 137(4):463-473.
[9]Coustau, C., Carton, Y., Nappi, A., Shotkoski, F., Ffrench-Constant, R., 1996. Differential induction of antibacterial transcripts in Drosophila susceptible and resistant to parasitism by Leptopilina boulardi. Insect Mol. Biol., 5(3):167-172.
[10]Dweck, H.K.M., 2009. Antennal sensory receptors of Pteromalus puparum female (Hymenoptera: Pteromalidae), a gregarious pupal endoparasitoid of Pieris rapae. Micron, 40(8):769-774.
[11]Francis, F., Gerkens, P., Harmel, N., Mazzucchelli, G., de Pauw, E., Haubruge, E., 2006. Proteomics in Myzus persicae: effect of aphid host plant switch. Insect Biochem. Mol. Biol., 36(3):219-227.
[12]Guerra, A.A., Robacker, K.M., Martinez, S., 1993. Free amino acid and protein titers in Anthonomus grandis larvae venomized by Bracon mellitor. BioControl, 38(4):519-525.
[13]Gupta, S., Wang, Y., Jiang, H.B., 2005. Manduca sexta prophenoloxidase (proPO) activation requires proPO-activating proteinase (PAP) and serine proteinase homologs (SPHs) simultaneously. Insect Biochem. Mol. Biol., 35(3):241-248.
[14]Hayakawa, Y., Ohnishi, A., Endo, Y., 1998. Mechanism of parasitism-induced elevation of haemolymph growth-blocking peptide levels in host insect larvae (Pseudaletia separata). J. Insect Physiol., 44(9):859-866.
[15]Hu, C., 1984. Life history and occurrence of Pteromalus puparum L. in China. Acta Entomol. Sinica, 27(3):302-307 (in Chinese).
[16]Kaeslin, M., Pfister-Wilhelm, R., Molina, D., Lanzrein, B., 2005. Changes in the haemolymph proteome of Spodoptera littoralis induced by the parasitoid Chelonus inanitus or its polydnavirus and physiological implications. J. Insect Physiol., 51(9):975-988.
[17]Lavine, M.D., Beckage, N.E., 1995. Polydnaviruses-potent mediators of host insect immune dysfunction. Parasitol. Today, 11(10):368-378.
[18]Mahadav, A., Gerling, D., Gottlieb, Y., Czosnek, H., Ghanim, M., 2008. Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci. BMC Genomics, 9(1):342.
[19]Mansfield, S.G., Cammer, S., Alexander, S.C., Muehleisen, D.P., Gray, R.S., Tropsha, A., Bollenbacher, W.E., 1998. Molecular cloning and characterization of an invertebrate cellular retinoic acid binding protein. PNAS, 95(12):6825-6830.
[20]Moreau, S.J., Guillot, S., 2005. Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochem. Mol. Biol., 35(11):1209-1223.
[21]Nakamatsu, Y., Tanaka, T., 2003. Venom of ectoparasitoid, Euplectrus sp. near plathypenae (Hymenoptera: Eulophidae) regulates the physiological state of Pseudaletia separate (Lepidoptera: Noctuidae) host as a food resource. J. Insect Physiol., 49(2):149-159.
[22]Nakamatsu, Y., Gyotoku, Y., Tanaka, T., 2001. The endoparasitoid Cotesia kariyai (Ck) regulates the growth and metabolic efficiency of Pseudaletia separata larvae by venom and Ck polydnavirus. J. Insect Physiol., 47(6):573-584.
[23]Nguyen, T.T., Boudreault, S., Michaud, D., Cloutier, C., 2008. Proteomes of the aphid Macrosiphum euphorbiae in its resistance and susceptibility responses to differently compatible parasitoids. Insect Biochem. Mol. Biol., 38(7):730-739.
[24]Pennacchio, F., Strand, M.R., 2006. Evolution of developmental strategies in parasitic hymenoptera. Annu. Rev. Entomol., 51(1):233-258.
[25]Reineke, A., Löbmann, S., 2005. Gene expression changes in Ephestia kuehniella caterpillars after parasitization by the endoparasitic wasp Venturia canescens analyzed through cDNA-AFLPs. J. Insect Physiol., 51(8):923-932.
[26]Richards, E.H., Edwards, J.P., 2001. Proteins synthesized and secreted by larvae of the ectoparasitic wasp, Eulophus pennicornis. Arch. Insect Biochem. Physiol., 46(3):140-151.
[27]Schmidt, O., 2006. At the core of parasitoid-host interactions. Arch. Insect Biochem. Physiol., 61(3):107-109.
[28]Shelby, K.S., Webb, B.A., 1997. Polydnavirus infection inhibits translation of specific growth-associated host proteins. Insect Biochem. Mol. Biol., 27(3):263-270.
[29]Shevchenko, A., Wilm, M., Vorm, O., Mann, M., 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem., 68(5):850-858.
[30]Song, K.H., Jung, M.K., Eum, J.H., Hwang, I.C., Sik-Han, S., 2008. Proteomic analysis of parasitized Plutella xylostella larvae plasma. J. Insect Physiol., 54(8):1271-1280.
[31]Stettler, P., Trenczek, T., Wyler, T., Pfister-Wilhelm, R., Lanzrein, B., 1998. Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis. J. Insect Physiol., 44(9):817-831.
[32]Takagi, M., 1985. The reproductive strategy of the gregarious parasitoid, Pteromalus puparum. 1. Optimal number of eggs in a single host. Oecologia, 68(1):1-6.
[33]Tang, Q.Y., Feng, M.G., 2007. DPS© Data Processing System: Experimental Design, Statistical Analysis Data Mining. Science Press, Beijing, China. Available from http://www. chinadps.net (in Chinese).
[34]Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25(24):4876-4882.
[35]Untalan, P.M., Guerrero, F.D., Haines, L.R., Pearson, T.W., 2005. Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol., 35(2):141-151.
[36]Vass, E., Nappi, A.J., 2000. Developmental and immunological aspects of Drosophila-parasitoid relationships. J. Parasitol., 86(6):1259-1270.
[37]Veiga-Malta, I., Duarte, M., Dinis, M., Tavares, D., Videira, A., Ferreira, P., 2004. Enolase from Streptococcus sobrinus is an immunosuppressive protein. Cell Immunol., 6(1):79-88.
[38]Zhang, J., Sachio, I., Tsugehara, T., Takeda, M., 2006. MbIDGF, a novel member of the imaginal disc growth factor family in Mamestra brassicae, stimulates cell proliferation in two lepidopteran cell lines without insulin. Insect Biochem. Mol. Biol., 36(7):536-546.
[39]Zhang, Z., Ye, G.Y., Cai, J., Hu, C., 2005. Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells. Toxicon, 46(3):337-349.
[40]Zhu, J.Y., Ye, G.Y., Hu, C., 2008a. Molecular cloning and characterization of acid phosphatase in venom of the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Toxicon, 51(8):1391-1399.
[41]Zhu, J.Y., Ye, G.Y., Hu, C., 2008b. Morphology and ultrastructure of the venom apparatus in the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Micron, 39(7):926-933.
[42]Zhu, J.Y., Ye, G.Y., Qi, F., Hu, C., 2009a. Proteome changes in the plasma of Papilio xuthus (Lepidoptera: Papilionidae): effect of parasitization by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae). J. Zhejiang Univ.-Sci. B, 10(6):445-453.
[43]Zhu, J.Y., Ye, G.Y., Dong, S.Z., Fang, Q., Hu, C., 2009b. Venom of Pteromalus puparum (Hymenoptera: Pteromalidae) induced endocrine changes in the hemolymph of its host, Pieris rapae (Lepidoptera: Pieridae). Arch. Insect Biochem. Physiol., 71(1):45-53.
Open peer comments: Debate/Discuss/Question/Opinion
<1>