Full Text:   <2886>

CLC number: S565.4; Q812

On-line Access: 2010-07-04

Received: 2010-04-29

Revision Accepted: 2010-06-11

Crosschecked: 2010-06-13

Cited: 11

Clicked: 6284

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2010 Vol.11 No.7 P.471-481


Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.)

Author(s):  Xiao-ying Zhao, Deng-feng Zhu, Bo Zhou, Wu-sheng Peng, Jian-zhong Lin, Xing-qun Huang, Re-qing He, Yu-hong Zhuo, Dan Peng, Dong-ying Tang, Ming-fang Li, Xuan-ming Liu

Affiliation(s):  Bioenergy and Biomaterial Research Center, Institute of Life Science and Technology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China, Academy of Seed Industry of Hunan Yahua, Changsha 410001, China

Corresponding email(s):   sw_xml@hnu.cn

Key Words:  Rapeseed, AtGA2ox8, Biomass, Lignification, Gibberellins

Share this article to: More |Next Article >>>

Xiao-ying Zhao, Deng-feng Zhu, Bo Zhou, Wu-sheng Peng, Jian-zhong Lin, Xing-qun Huang, Re-qing He, Yu-hong Zhuo, Dan Peng, Dong-ying Tang, Ming-fang Li, Xuan-ming Liu. Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.)[J]. Journal of Zhejiang University Science B, 2010, 11(7): 471-481.

@article{title="Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.)",
author="Xiao-ying Zhao, Deng-feng Zhu, Bo Zhou, Wu-sheng Peng, Jian-zhong Lin, Xing-qun Huang, Re-qing He, Yu-hong Zhuo, Dan Peng, Dong-ying Tang, Ming-fang Li, Xuan-ming Liu",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.)
%A Xiao-ying Zhao
%A Deng-feng Zhu
%A Bo Zhou
%A Wu-sheng Peng
%A Jian-zhong Lin
%A Xing-qun Huang
%A Re-qing He
%A Yu-hong Zhuo
%A Dan Peng
%A Dong-ying Tang
%A Ming-fang Li
%A Xuan-ming Liu
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 7
%P 471-481
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000161

T1 - Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.)
A1 - Xiao-ying Zhao
A1 - Deng-feng Zhu
A1 - Bo Zhou
A1 - Wu-sheng Peng
A1 - Jian-zhong Lin
A1 - Xing-qun Huang
A1 - Re-qing He
A1 - Yu-hong Zhuo
A1 - Dan Peng
A1 - Dong-ying Tang
A1 - Ming-fang Li
A1 - Xuan-ming Liu
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 7
SP - 471
EP - 481
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000161

Gibberellin 2-oxidase (GA 2-oxidase) plays very important roles in plant growth and development. In this study, the AtGA2ox8 gene, derived from Arabidopsis (Arabidopsis thaliana), was transformed and over-expressed in rapeseed (Brassica napus L.) to assess the role of AtGA2ox8 in biomass accumulation and lignification in plants. The transgenic plants, identified by resistant selection, polymerase chain reaction (PCR) and reverse-transcription PCR (RT-PCR) analyses, and green fluorescence examination, showed growth retardation, flowering delay, and dwarf stature. The fresh weight and dry weight in transgenic lines were about 21% and 29% lower than those in wild type (WT), respectively, and the fresh to dry weight ratios were higher than that of WT. Quantitative measurements demonstrated that the lignin content in transgenic lines decreased by 10%–20%, and histochemical staining results also showed reduced lignification in transgenic lines. Quantitative real-time PCR analysis indicated that the transcript levels of lignin biosynthetic genes in transgenic lines were markedly decreased and were consistent with the reduced lignification. These results suggest that the reduced biomass accumulation and lignification in the AtGA2ox8 over-expression rapeseed might be due to altered lignin biosynthetic gene expression.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Agharkar, M., Lomba, P., Altpeter, F., Zhang, H., Kenworthy, K., Lange, T., 2007. Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnology Journal, 5(6):791-801.

[2]Alabadi, D., Gil, J., Blazquez, M.A., Garcia-Martinez, J.L., 2004. Gibberellins repress photomorphogenesis in darkness. Plant Physiology, 134(3):1050-1057.

[3]Appleford, N.E.J., Wilkinson, M.D., Ma, Q., Evans, D.J., Stone, M.C., Pearce, S.P., Powers, S.J., Thomas, S.G., Jones, H.D., Phillips, A.L., et al., 2007. Decreased shoot stature and grain α-amylase activity following ectopic expression of a gibberellin 2-oxidase gene in transgenic wheat. Journal of Experimental Botany, 58(12):3213-3226.

[4]Biemelt, S., Tschiersch, H., Sonnewald, U., 2004. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology, 135(1):254-265.

[5]Boerjan, W., Ralph, J., Baucher, M., 2003. Lignin biosynthesis. Annual Review of Plant Biology, 54(1):519-546.

[6]Busov, V.B., Meilan, R., Pearce, D.W., Ma, C.P., Rood, S.B., Strauss, S.H., 2003. Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiology, 132(3):1283-1291.

[7]Campbell, M.M., Ellis, B.E., 1992. Fungal elicitor-mediated responses in pine cell cultures I. Induction of phenylpropanoid metabolism. Planta, 186(3):409-417.

[8]Dijkstra, C., Adams, E., Bhattacharya, A., Page, A.F., Anthony, P., Kourmpetli, S., Power, J.B., Lowe, K.C., Thomas, S.G., Hedden, P., et al., 2008. Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Reports, 27(3):463-470.

[9]Eriksson, M.E., Israelsson, M., Olsson, O., Moritz, T., 2000. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 18(7):784-788.

[10]Fukushima, R.S., Dehority, B.A., 2000. Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses. Journal of Animal Science, 78(12):3135-3143.

[11]Fukushima, R.S., Hatfield, R.D., 2001. Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. Journal of Agricultural and Food Chemistry, 49(7):3133-3139.

[12]Fukushima, R.S., Hatfield, R.D., 2004. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples. Journal of Agricultural and Food Chemistry, 52(12):3713-3720.

[13]Harberd, N.P., King, K.E., Carol, P., Cowling, R.J., Peng, J., Richards, D.E., 1998. Gibberellin: inhibitor of an inhibitor of ...? Bioessays, 20(12):1001-1008.

[14]Hedden, P., Proebsting, W.M., 1999. Genetic analysis of gibberellin biosynthesis. Plant Physiology, 119(2):365-370.

[15]Hedden, P., Phillips, A.L., 2000. Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12):523-530.

[16]Helliwell, C.A., Chandler, P.M., Poole, A., Dennis, E.S., Peacock, W.J., 2001. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America, 98(4):2065-2070.

[17]Israelsson, M., Sundberg, B., Moritz, T., 2005. Tissue-specific localization of gibberellins and expression of gibberellin biosynthetic and signalling genes in wood-forming tissues in aspen. The Plant Journal, 44(3):494-504.

[18]Kende, H., Zeevaart, J.A.D., 1997. The five “classical” plant hormones. Plant Cell, 9(7):1197-1210.

[19]Lee, D.J., Zeevaart, J.A.D., 2002. Differential regulation of RNA levels of gibberellin dioxygenases by photoperiod in spinach. Plant Physiology, 130(4):2085-2094.

[20]Lee, D.J., Zeevaart, J.A.D., 2005. Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiology, 138(1):243-254.

[21]Lester, D.R., Ross, J.J., Smith, J.J., Elliott, R.C., Reid, J.B., 1999. Gibberellin 2-oxidation and the SLN gene of Pisum sativum. The Plant Journal, 19(1):65-73.

[22]Lin, C., Yang, H., Guo, H., Mockler, T., Chen, J., Cashmore, A.R., 1998. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proceedings of the National Academy of Sciences of the United States of America, 95(5):2686-2690.

[23]Lin, J., Zhou, B., Yang, Y., Mei, J., Zhao, X., Guo, X., Huang, X., Tang, D., Liu, X., 2009. Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Reports, 28(7):1065-1074.

[24]Lo, S.F., Yang, S.Y., Chen, K.T., Hsing, Y.I., Zeevaart, J.A., Chen, L.J., Yu, S.M., 2008. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell, 20(10):2603-2618.

[25]Martin, D.N., Proebsting, W.M., Hedden, P., 1999. The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiology, 121(3):775-781.

[26]Murray, M.G., Thompson, W.F., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19):4321-4325.

[27]Nakaminami, K., Sawada, Y., Suzuki, M., Kenmoku, H., Kawaide, H., Mitsuhashi, W., Sassa, T., Inoue, Y., Kamiya, Y., Toyomasu, T., 2003. Deactivation of gibberellin by 2-oxidation during germination of photoblastic lettuce seeds. Bioscience, Biotechnology, and Biochemistry, 67(7):1551-1558.

[28]Olsen, O., Soerensen, H., 1980. Sinalbin and other glucosinolates in seeds of double low rape species and Brassica napus cv. Bronowski. Journal of Agricultural and Food Chemistry, 28(1):43-48.

[29]Olszewski, N., Sun, T.P., Gubler, F., 2002. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell, 14(Suppl. 1):S61-S80.

[30]Panford, J.A., de Man, J.M., 1990. Determination of oil content of seeds by NIR: influence of fatty acid composition on wavelength selection. Journal of the American Oil Chemists’ Society, 67(8):473-482.

[31]Rieu, I., Eriksson, S., Powers, S.J., Gong, F., Griffiths, J., Woodley, L., Benlloch, R., Nilsson, O., Thomas, S.G., Hedden, P., et al., 2008. Genetic analysis reveals that C19-GA 2 oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell, 20(9):2420-2436.

[32]Sakamoto, T., Kobayashi, M., Itoh, H., Tagiri, A., Kayano, T., Tanaka, H., Iwahori, S., Matsuoka, M., 2001. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiology, 125(3):1508-1516.

[33]Sakamoto, T., Miura, K., Ihoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G.K., Takeda, S., Abe, K., et al., 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology, 134(4):1642-1653.

[34]Schomburg, F.M., Bizzell, C.M., Lee, D.J., Zeevaart, J.A.D., Amasino, R.M., 2003. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell, 15(1):151-163.

[35]Sivaraman, I., Arumugam, N., Sodhi, Y.S., Gupta, V., Mukhopadhyay. A., Pradhan, A.K., Burma1, P.K., Pental, D., 2004. Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2 gene. Molecular Breeding, 13(4):365-375.

[36]Sun, T., Goodman, H.M., Ausubel, F.M., 1992. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell, 4(2):119-128.

[37]Sun, T.P., Gubler, F., 2004. Molecular mechanism of gibberellin signaling in plants. Annual Review of Plant Biology, 55(1):197-223.

[38]Thomas, S.G., Phillips, A.L., Hedden, P., 1999. Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proceedings of the National Academy of Science of the United States of America, 96(8):4698-4703.

[39]Wang, H., Caruso, L.V., Downie, A.B., Perry, S.E., 2004. The embryo MADS domain protein AGAMOUS-Like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell, 16(5):1206-1219.

[40]Wang, Q.M., Tu, X.J., Deng, K.Q., Zeng, J.X., Zhao, X.Y., Tang, D.Y., Liu, X.M., 2009. A defect in zinc finger protein double B-box 1a (DBB1a) causes abnormal floral development in Arabidopsis. Journal of Plant Biology, 52(6):543-549.

[41]Zhao, X.Y., Yu, X.H., Foo, E., Symons, G.M., Lopez, J., Bendehakkalu, K.T., Xiang, J., Weller, J.L., Liu, X.M., Reid, J.B., et al., 2007a. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiology, 145(1):106-118.

[42]Zhao, X.Y., Yu, X.H., Liu, X.M., Lin, C.T., 2007b. Light regulation of gibberellins metabolism in seedling development. Journal of Integrative Plant Biology, 49(1):21-27.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE