Full Text:   <3301>

CLC number: R961

On-line Access: 2012-11-05

Received: 2011-10-03

Revision Accepted: 2012-05-29

Crosschecked: 2012-10-07

Cited: 10

Clicked: 5431

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.11 P.932-941


Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing

Author(s):  Paweł Olczyk, Katarzyna Komosińska-Vassev, Katarzyna Winsz-Szczotka, Ewa M. Koźma, Grzegorz Wisowski, Jerzy Stojko, Katarzyna Klimek, Krystyna Olczyk

Affiliation(s):  Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, 41-200 Sosnowiec, Poland; more

Corresponding email(s):   polczyk@sum.edu.pl

Key Words:  Apitherapeutic agent, Silver sulfadiazine, Laminin, Vitronectin, Heparan sulfate/heparin, Wound healing

Paweł Olczyk, Katarzyna Komosińska-Vassev, Katarzyna Winsz-Szczotka, Ewa M. Koźma, Grzegorz Wisowski, Jerzy Stojko, Katarzyna Klimek, Krystyna Olczyk. Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing[J]. Journal of Zhejiang University Science B, 2012, 13(11): 932-941.

@article{title="Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing",
author="Paweł Olczyk, Katarzyna Komosińska-Vassev, Katarzyna Winsz-Szczotka, Ewa M. Koźma, Grzegorz Wisowski, Jerzy Stojko, Katarzyna Klimek, Krystyna Olczyk",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing
%A Paweł Olczyk
%A Katarzyna Komosińska-Vassev
%A Katarzyna Winsz-Szczotka
%A Ewa M. Koźma
%A Grzegorz Wisowski
%A Jerzy Stojko
%A Katarzyna Klimek
%A Krystyna Olczyk
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 11
%P 932-941
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100310

T1 - Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing
A1 - Paweł Olczyk
A1 - Katarzyna Komosińska-Vassev
A1 - Katarzyna Winsz-Szczotka
A1 - Ewa M. Koźma
A1 - Grzegorz Wisowski
A1 - Jerzy Stojko
A1 - Katarzyna Klimek
A1 - Krystyna Olczyk
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 11
SP - 932
EP - 941
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100310

Objective: This study was aimed at assessing the dynamics of vitronectin (VN), laminin (LN), and heparan sulfate/heparin (HS/HP) content changes during experimental burn healing. Methods: VN, LN, and HS/HP were isolated and purified from normal and injured skin of domestic pigs, on the 3rd, 5th, 10th, 15th, and 21st days following thermal damage. The wounds were treated with apitherapeutic agent (propolis), silver sulfadiazine (SSD), physiological salt solution, and propolis vehicle. VN and LN were quantified using an immunoenzymatic assay and HS/HP was estimated by densitometric analysis. Results: Propolis treatment stimulated significant increases in VN, LN, and HS/HP contents during the initial phase of study, followed by a reduction in the estimated extracellular matrix molecules. Similar patterns, although less extreme, were observed after treatment with SSD. Conclusions: The beneficial effects of propolis on experimental wounds make it a potential apitherapeutic agent in topical burn management.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Ansorge, S., Reinhold, D., Lendeckel, U., 2003. Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine production but induce TGF-β1 production of human immune cells. Z. Naturforsch. C, 58(7-8):580-589.

[2]Beauvais, D.M., Ell, B.J., McWhorter, A.R., Rapraeger, A.C., 2009. Syndecan-1 regulates αvβ3 and αvβ5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J. Exp. Med., 206(3):691-705.

[3]Bernards, M.T., Jiang, S., 2008. pH-induced conformation changes of adsorbed vitronectin maximize its bovine aortic endothelial cell binding ability. J. Biomed. Mater. Res. A, 87(2):505-514.

[4]Blumenkrantz, N., Asboe-Hansen, G., 1973. New method for quantitative determination of uronic acids. Anal. Biochem., 54(2):484-489.

[5]Brans, T.A., Dutrieux, R.P., Hoekstra, M.J., Kreis, R.W., du Pont, J.S., 1994. Histopathological evaluation of scalds and contact burns in the pig model. Burns, 20:S48-S51.

[6]Chen, Y., Shi-Wen, X., van Beek, J., Kennedy, L., McLeod, M., Renzoni, E.A., Bou-Gharios, G., Wilcox-Adelman, S., Goetinck, P.F., Eastwood, M., et al., 2005. Matrix contraction by dermal fibroblasts requires transforming growth factor-β/activin-linked kinase 5, heparan sulfate-containing proteoglycans, and MEK/ERK: insights into pathological scarring in chronic fibrotic disease. Am. J. Pathol., 167(6):1699-1711.

[7]Costagliola, M., Agrosi, M., 2005. Second-degree burns: a comparative, multicenter, randomized trial of hyaluronic acid plus silver sulfadiazine vs. silver sulfadiazine alone. Curr. Med. Res. Opin., 21(8):1235-1240.

[8]Durbeej, M., 2010. Laminins. Cell Tissue Res., 339(1):259-268.

[9]Ekmekçi, O.B., Ekmekçi, H., 2006. Vitronectin in atherosclerotic disease. Clin. Chim. Acta, 368(1-2):77-83.

[10]El-Hadidy, M.R., El-Hadidy, A.R., 2003. Clinical and histological evaluation of acellular allograft dermal matrix in full-thickness burns. Egypt J. Plast. Reconstr. Surg., 27(1):61-72.

[11]El Kahi, C.G., Atiyeh, B.S., Abdallah Hajj Hussein, I., Jurjus, R., Dibo, S.A., Jurjus, A., Jurjus, A., 2009. Modulation of wound contracture α-smooth muscle actin and multispecific vitronectin receptor integrin αvβ3 in the rabbit’s experimental model. Int. Wound J., 6(3):214-224.

[12]Geberhiwot, T., Wondimu, Z., Salob, S., Pikkarainenc, T., Kortesmaac, J., Tryggvasonc, K., Virtanend, I., Patarroyoa, M., 2000. Chain specificity assignment of monoclonal antibodies to human laminins by using recombinant laminin β1 and γ1 chains. Matrix Biol., 19(2):163-167.

[13]Geer, D.J., Swartz, D.D., Andreadis, S.T., 2004. In vivo model of wound healing based on transplanted tissue-engineered skin. Tissue Eng., 10(7):1006-1017.

[14]Goh, Y.Y., Pal, M., Chong, H.C., Zhu, P., Tan, M.J., Punugu, L., Tan, C.K., Huang, R.L., Sze, S.K., Tang, M.B., et al., 2010. Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J. Biol. Chem., 285(43):32999-33009.

[15]Greenhouse, S.W., Geisser, S., 1959. On methods in the analysis of profile data. Psychometrika, 24(2):95-112.

[16]Groah, S.L., Libin, A., Spungen, M., Nguyen, K.L., Woods, E., Nabili, M., Ramella-Roman, J., Barritault, D., 2011. Regenerating matrix-based therapy for chronic wound healing: a prospective within-subject pilot study. Int. Wound J., 8(1):85-95.

[17]Havran, W.L., Jameson, J.M., 2010. Epidermal T cells and wound healing. J. Immunol., 184(10):5423-5428.

[18]Hoekstra, M.J., Hupkens, P., Dutrieux, R.P., Bosch, M.M.C., Brans, T.A., Kreis, R.W., 1993. A comparative burn wound model in the New Yorkshire pig for the histopathological evaluation of local therapeutic regimens: silver sulfadiazine cream as a standard. Br. J. Plast. Surg., 46(7):585-589.

[19]Huynh, H., Feldt, L.S., 1970. Conditions under which mean square ratios in repeated measurements designs have exact F-distributions. J. Amer. Statist. Assoc., 65(332):1582-1589.

[20]Hyde, C., Hollier, B., Anderson, A., Harkin, D., Upton, Z., 2004. Insulin-like growth factors (IGF) and IGF-binding proteins bound to vitronectin enhance keratinocyte protein synthesis and migration. J. Invest. Dermatol., 122(5):1198-1206.

[21]Iriyama, S., Hiruma, T., Tsunenaga, M., Amano, S., 2011. Influence of heparan sulfate chains in proteoglycan at the dermal-epidermal junction on epidermal homeostasis. Exp. Dermatol., 20(10):810-814.

[22]Kikkawa, Y., Takaki, S., Matsuda, Y., Okabe, K., Taniguchi, M., Oomachi, K., Samejima, T., Katagiri, F., Hozumi, K., Nomizu, M., 2010. The influence of tribenoside on expression and deposition of epidermal laminins in HaCaT cells. Biol. Pharm. Bull., 33(2):307-310.

[23]Koli, K., Lohi, J., Hautanen, A., Keski-Oja, J., 1991. Enhancement of vitronectin expression in human HepG2 hepatoma cells by transforming growth factor-β1. Eur. J. Biochem., 199(2):337-345.

[24]Komosińska-Vassev, K., Winsz-Szczotka, K., Kuznik-Trocha, K., Olczyk, P., Olczyk, K., 2008. Age-related changes of plasma glycosaminoglycans. Clin. Chem. Lab. Med., 46(2):219-224.

[25]Köhling, R., Nischt, R., Vasudevan, A., Ho, M., Weiergräber, M., Schneider, T., Smyth, N., 2006. Nidogen and nidogen-associated basement membrane proteins and neuronal plasticity. Neurodegener. Dis., 3(1-2):56-61.

[26]Liu, T.L., Miao, J.C., Sheng, W.H., Xie, Y.F., Huang, Q., Shan, Y.B., Yang, J.C., 2010. Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 11(1):10-16.

[27]Malavaki, C.J., Theocharis, A.D., Lamari, F.N., Kanakis, I., Tsegenidis, T., Tzanakakis, G.N., Karamanos, N.K., 2011. Heparan sulfate: biological significance, tools for biochemical analysis and structural characterization. Biomed. Chromatogr., 25(1-2):11-20.

[28]Malinda, K.M., Wysocki, A.B., Koblinski, J.E., Kleinman, H.K., Ponce, M.L., 2008. Angiogenic laminin-derived peptides stimulate wound healing. Int. J. Biochem. Cell Biol., 40(12):2771-2780.

[29]McLennan, S.V., Bonner, J., Milne, S., Lo, L., Charlton, A., Kurup, S., Jia, J., Yue, D.K., Twigg, S.M., 2008. The anti-inflammatory agent propolis improves wound healing in a rodent model of experimental diabetes. Wound Rep. Reg., 16(5):706-713.

[30]Moura, S.A., Ferreira, M.A., Andrade, S.P., Reis, M.L., Noviello, M.D., Cara, D.C., 2011. Brazilian green propolis inhibits inflammatory angiogenesis in a murine sponge model. Evid. Based Complement. Alternat. Med., 2011:182703.

[31]Natarajan, E., Omobono, J.D.2nd, Guo, Z., Hopkinson, S., Lazar, A.J., Brenn, T., Jones, J.C., Rheinwald, J.G., 2006. A keratinocyte hypermotility/growth-arrest response involving laminin 5 and p16INK4A activated in wound healing and senescence. Am. J. Pathol., 168(6):1821-1837.

[32]Olczyk, P., Wróblewska-Adamek, I., Stojko, J., Komosińska-Vassev, K., Olczyk, K., 2008. Histopathological evaluation of Propol-T and silver sulfadiazine therapeutic efficacy in burn healing. Farm. Pol., 63(24):1108-1116 (in Polish).

[33]Olczyk, P., Komosińska-Vassev, K., Koźma, E.M., Winsz-Szczotka, K., Stojko, J., Klimek, K., Olczyk, K., 2010. Assessment of glucuronosyl epimerization of dermatan sulfate chains in the course of burned wound healing. Bull. Vet. Inst. Pulawy, 54:625-629.

[34]Piccard, H., van den Steen, P.E., Opdenakker, G., 2007. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J. Leukoc. Biol., 81(4):870-892.

[35]Ragbow, R., Seyer, J., Kang, A., 2006. Connective Tissue of the Subendothelium. In: Creager, M.A., Loscalzo, J., Dzau, V.J. (Eds.), Vascular Medicine: A Companion to Braunwald’s Heart Disease, 7th Ed. Saunders Elsevier, Philadelphia, p.31-60.

[36]Räsänen, K., Vaheri, A., 2010. Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis. Exp. Cell Res., 316(10):1739-1747.

[37]Roediger, M., Miosge, N., Gersdorff, N., 2010. Tissue distribution of the laminin β1 and β2 chain during embryonic and fetal human development. J. Mol. Histol., 41(2-3):177-184.

[38]Sano, K., Asanuma-Date, K., Arisaka, F., Hattori, S., Ogawa, H., 2007. Changes in glycosylation of vitronectin modulate multimerization and collagen binding during liver regeneration. Glycobiology, 17(7):784-794.

[39]Schultz, G.S., Wysocki, A., 2009. Interactions between extracellular matrix and growth factors in wound healing. Wound Rep. Reg., 17(2):153-162.

[40]Scott, J.E., 1960. Aliphatic Ammonium Salts in the Assay of Acidic Polysaccharides from Tissues. In: Glick, D. (Ed.), Methods of Biochemical Analysis. Wiley, New York, p.145-197.

[41]Sforcin, J.M., Bankova, V., 2011. Propolis: is there a potential for the development of new drugs? J. Ethnopharmacol., 133(2):253-260.

[42]Slim, G.C., Furneaux, R.H., Yorke, S.C., 1994. A procedure for the analysis of glycosaminoglycan mixtures based on digestion by specific enzymes. Carbohydr. Res., 255:285-293.

[43]Sugawara, K., Tsuruta, D., Ishii, M., Jones, J.C., Kobayashi, H., 2008. Laminin-332 and -511 in skin. Exp. Dermatol., 17(6):473-480.

[44]Takasaki, I., Chobanian, A.V., Brecher, P., 1991. Biosynthesis of fibronectin by rabbit aorta. J. Biol. Chem., 266(26):17686-17694.

[45]Teoh, M.L., Fitzgerald, M.P., Oberley, L.W., Domann, F.E., 2009. Overexpression of extracellular superoxide dismutase attenuates heparanase expression and inhibits breast carcinoma cell growth and invasion. Cancer Res., 69(15):6355-6363.

[46]Tong, M., Zbinden, M.M., Hekking, I.J., Vermeij, M., Barritault, D., van Neck, J.W., 2008. RGTA OTR 4120, a heparan sulfate proteoglycan mimetic, increases wound breaking strength and vasodilatory capability in healing rat full-thickness excisional wounds. Wound Rep. Reg., 16(2):294-299.

[47]Tuan, T.L., Hwu, P., Ho, W., Yiu, P., Chang, R., Wysocki, A., Benya, P.D., 2008. Adenoviral overexpression and small interfering RNA suppression demonstrate that plasminogen activator inhibitor-1 produces elevated collagen accumulation in normal and keloid fibroblasts. Am. J. Pathol., 173(5):1311-1325.

[48]Tzu, J., Marinkovich, M.P., 2008. Bridging structure with function: structural, regulatory, and developmental role of laminins. Int. J. Biochem. Cell Biol., 40(2):199-214.

[49]van Amerongen, J.P., Lemmens, A.G., Tonino, G.J.M., 1990. Glycosaminoglycans in Dental Pulp. In: Olgart, I.K. (Ed.), Dynamic Aspects of Dental Pulp: Molecular Biology, Pharmacology and Pathophysiology. Chapman and Hall, London, p.259-276.

[50]Voermans, N.C., Bönnemann, C.G., Huijing, P.A., Hamel, B.C., van Kuppevelt, T.H., de Haan, A., Schalkwijk, J., van Engelen, B.G., Jenniskens, G.J., 2008. Interactions between extracellular matrix and growth factors in wound healing. Neuromuscul. Disord., 18(11):843-856.

[51]Wang, Z., Xu, Y., Yang, B., Tiruchinapally, G., Sun, B., Liu, R., Dulaney, S., Liu, J., Huang, X., 2010. Preactivation-based, one-pot combinatorial synthesis of heparin-like hexasaccharides for the analysis of heparin-protein interactions. Chem. Eur. J., 16(28):8365-8375.

[52]Wegrowski, Y., Milard, A.L., Kotlarz, G., Toulmonde, E., Maquart, F.X., Bernard, J., 2006. Cell surface proteoglycan expression during maturation of human monocytes-derived dendritic cells and macrophages. Clin. Exp. Immunol., 144(3):485-493.

[53]Werner, S., Krieg, T., Smola, H., 2007. Keratinocyte-fibroblast interactions in wound healing. J. Invest. Dermatol., 127(5):998-1008.

[54]Yildiz, Y., Serter, M., Ek, R.O., Ergin, K., Cecen, S., Demir, E.M., Yenisey, C., 2009. Protective effects of caffeic acid phenethyl ester on intestinal ischemia-reperfusion injury. Dig. Dis. Sci., 54(4):738-744.

Open peer comments: Debate/Discuss/Question/Opinion


seo service@No address<Larissa.h.j@msn.com>

2012-12-30 20:10:20

I think other site proprietors should take www.zju.edu.cn as an model very clean and excellent user friendly style and design let alone the content. You are an expert in this topic!

Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE