Full Text:   <1124>

Summary:  <391>

CLC number: X52

On-line Access: 2015-04-03

Received: 2014-04-17

Revision Accepted: 2014-12-10

Crosschecked: 2015-03-10

Cited: 4

Clicked: 2177

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiang Hu

http://orcid.org/0000-0002-1205-9611

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.4 P.304-316

http://doi.org/10.1631/jzus.B1400106


Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal


Author(s):  Fan Bu, Xiang Hu, Li Xie, Qi Zhou

Affiliation(s):  State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

Corresponding email(s):   xiangh1215@outlook.com

Key Words:  Biological nutrient removal (BNR), Denitrification, Enhanced biological phosphorus removal (EBPR), External carbon source


Fan Bu, Xiang Hu, Li Xie, Qi Zhou. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal[J]. Journal of Zhejiang University Science B, 2015, 16(4): 304-316.

@article{title="Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal",
author="Fan Bu, Xiang Hu, Li Xie, Qi Zhou",
journal="Journal of Zhejiang University Science B",
volume="16",
number="4",
pages="304-316",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400106"
}

%0 Journal Article
%T Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal
%A Fan Bu
%A Xiang Hu
%A Li Xie
%A Qi Zhou
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 4
%P 304-316
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400106

TY - JOUR
T1 - Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal
A1 - Fan Bu
A1 - Xiang Hu
A1 - Li Xie
A1 - Qi Zhou
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 4
SP - 304
EP - 316
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400106


Abstract: 
The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

木薯酒糟及其厌氧发酵液作为外加碳源强化城市生活污水生物营养盐去除研究

中文概要:
目的:针对目前城市污水处理中普遍存在的进水碳源不足引起的脱氮除磷效率不高的问题,而大量具有很高碳氮比(C/N)和可生物降解有机成分的食品工业废水亟需处理的现状,本文考察了木薯酒精厂废水(木薯酒糟及其厌氧发酵液)分别作为外加碳源资源化利用的可行性。
创新点:对比考察了木薯酒糟及其厌氧发酵液分别作为碳源对活性污泥系统脱氮除磷的影响,为处理低C/N比城市污水寻求廉价优质的外加碳源提供理论依据。
方法:通过运行三组平行的厌氧/缺氧/好氧序批式活性污泥反应器(SBR),以乙酸钠作为对比,考察木薯酒糟及其厌氧发酵液作为碳源对活性污泥系统碳、氮、磷变化规律的影响,并通过硝酸盐利用速率(NUR)和厌氧-缺氧/好氧批次试验对污泥特性进行分析。
结论:(1)在整个试验过程中,与乙酸钠作为碳源相比,木薯酒糟及其厌氧发酵液在相同的运行条件下取得了更高的总氮(TN)去除率,分别为(72.4±3.2)%和(73.2±2.6)%,高于乙酸钠的(62.6±3.5)%。NUR试验结果表明,木薯酒糟及其厌氧发酵液污泥的反硝化速率分别为5.49~5.99 g N/(kg MLVSS·h)和6.63~6.81 g N/(kg MLVSS·h),与其他研究中报道的食品工业废水的反硝化速率相当或略高。(2)以木薯酒糟及其厌氧发酵液作为碳源的系统发生了显著的反硝化聚磷现象,两体系中的反硝化聚磷菌分别占总聚磷菌的62.6%(86天)和61.8%(65天)。(3)以木薯酒糟上清液及其厌氧发酵液作为碳源的生物营养盐去除(SBR)系统均取得了良好稳定的脱氮除磷效果。在BNR工艺中投加木薯酒糟及其厌氧碱性发酵液作为外加碳源,不仅可以提高系统氮磷去除效果,还能解决这部分废水的处理问题,是一种很有潜力的替代碳源。

关键词:生物营养盐去除;外加碳源;反硝化;强化生物除磷

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]APHA (American Public Health Association), 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. APHA, Washington, DC.

[2]Bernet, N., Habouzit, F., Moletta, R., 1996. Use of an industrial effluent as a carbon source for denitrification of a high-strength wastewater. Appl. Microbiol. Biotechnol., 46(1):92-97.

[3]Cappai, G., Carucci, A., Onnis, A., 2004. Use of industrial wastewaters for the optimization and control of nitrogen removal processes. Water Sci. Technol., 50(6):17-24.

[4]Chae, S.R., Lee, S.H., Kim, J.O., et al., 2004. Simultaneous removal of organic and strong nitrogen from sewage in a pilot-scale BNR process supplemented with food waste. Water Sci. Technol., 49(5-6):257-264.

[5]Dubois, M., Gilles, K.A., Hamilton, J.K., et al., 1956. Colorimetric method for determination of sugar and related substance. Anal. Chem., 28(3):350-356.

[6]Fang, H.H.P., Zhang, T., Liu, Y., 2002. Characterization of an acetate degrading sludge without intracellular accumulation of polyphosphate and glycogen. Water Res., 36(13):3211-3218.

[7]Henze, M., Harremoës, P., la Cour Jansen, J., et al., 1995. Wastewater Treatment: Biological and Chemical Processes. Springer Verlag, Berlin.

[8]Hinojosa, J., Riffat, R., Fink, S., et al., 2008. Estimating the kinetics and stoichiometry of heterotrophic denitrifying bacteria with glycerol as an external carbon source. Proceedings of the 81st Annual WEF Technical Exhibition and Conference, Chicago, USA. Water Environment Federation, Alexandria, USA, p.274-288.

[9]Kampas, P., Parsons, S.A., Pearce, P., et al., 2009. An internal carbon source for improving biological nutrient removal. Bioresour. Technol., 100(1):149-154.

[10]Kuba, T., Murnleitner, E., van Loosdrecht, M.C.M., et al., 1996a. A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnol. Bioeng., 52(6):685-695.

[11]Kuba, T., van Loosdrecht, M.C.M., Heijnen, J.J., 1996b. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Res., 30(7):1702-1710.

[12]Lee, C.Y., Shin, H.S., Chae, S.R., et al., 2003. Nutrient removal using anaerobically fermented leachate of food waste in the BNR process. Water Sci. Technol., 47(1):159-165.

[13]Lemos, P.C., Serafim, L.S., Santos, M., et al., 2003. Metabolic pathway for propionate utilization by phosphorus-accumulating organisms in activated sludge: 13C labeling and in vivo nuclear magnetic resonance. Appl. Environ. Microbiol., 69(1):241-251.

[14]Li, H.J., Chen, Y.G., Gu, G.W., 2008. The effect of propionic to acetic acid ratio on anaerobic-aerobic (low dissolved oxygen) biological phosphorus and nitrogen removal. Bioresour. Technol., 99(10):4400-4407.

[15]Lim, S.J., Choi, D.W., Lee, W.G., et al., 2000. Volatile fatty acids production from food waste and its application to biological nutrient removal. Bioprocess. Eng., 22(6):543-545.

[16]Lowry, O.H., Rosebrough, N.J., Farr, A.L., et al., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1):265-275.

[17]Makinia, J., Drewnowski, J., Swinarski, M., et al., 2012. The impact of precipitation and external carbon source addition on biological nutrient removal in activated sludge systems—experimental investigation and mathematical modeling. Water Pract. Tech., 7(1).

[18]Monclús, H., Sipma, J., Ferrero, G., et al., 2010. Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal. Bioresour. Technol., 101(11):3984-3991.

[19]Monteith, H.D., Bridle, T.R., Sutton, P.M., 1980. Industrial waste carbon sources for biological denitrification. Progress Water Technol., 12(6):127-141.

[20]Oehmen, A., Yuan, Z.G., Blackall, L.L., et al., 2005a. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol. Bioeng., 91(2):162-168.

[21]Oehmen, A., Keller-Lehmann, B., Zeng, R.J., et al., 2005b. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J. Chromatogr. A, 1070(1-2):131-136.

[22]Oehmen, A., Lemos, P.C., Carvalho, G., et al., 2007. Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res., 41(11):2271-2300.

[23]Oh, J., Silverstein, J., 1999. Acetate limitation and nitrite accumulation during denitrification. J. Environ. Eng., 125(3):234-242.

[24]Peng, Y.Z., Wang, X.L., Li, B.K., 2006. Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process. Desalination, 189(1-3):155-164.

[25]Pijuan, M., Casas, C., Baettrrza, J.A., 2009. Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities. Process Biochem., 44(1):97-105.

[26]Quan, Z., Jin, Y., Yin, C., et al., 2005. Hydrolyzed molasses as an external carbon source in biological nitrogen removal. Bioresour. Technol., 96(15):1690-1695.

[27]Rodríguez, L., Villasenor, J., Buendia, I.M., et al., 2007a. Re-use of winery wastewaters for biological nutrient removal. Water Sci. Technol., 56(2):95-102.

[28]Rodríguez, L., Villasenor, J., Fernandez, F.J., 2007b. Use of agro-food wastewaters for the optimisation of the denitrification process. Water Sci. Technol., 55(10):63-70.

[29]Sage, M., Daufin, G., Gesan-Guiziou, G., 2006. Denitrification potential and rates of complex carbon source from dairy effluents in activated sludge system. Water Res., 40(14):2747-2755.

[30]Swinarski, M., Mąkinia, J., Czerwionka, K., et al., 2009a. Comparison of the effects of conventional and alternative external carbon sources for enhancing of the denitrification process. Water Environ. Res., 81(9):896-906.

[31]Swinarski, M., Mąkinia, J., Czerwionka, K., et al., 2009b. Industrial wastewater as an external carbon source for optimization of nitrogen removal at the “Wschód” WWTP in Gdańsk (Poland). Water Sci. Technol., 59(1):57-64.

[32]Thomas, M., Wright, P., Blackall, L., et al., 2003. Optimisation of Noosa BNR plant to improve performance and reduce operating costs. Water Sci. Technol., 47(12):141-148.

[33]Wachtmeister, A., Kuba, T., van Loosdrecht, M.C.M., et al., 1997. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Water Res., 31(3):471-478.

[34]Wang, Y.Y., Geng, J.J., Guo, G., et al., 2011. N2O production in anaerobic/anoxic denitrifying phosphorus removal process: the effects of carbon sources shock. Chem. Eng. J., 172(2-3):999-1007.

[35]Zhou, Y., Pijuan, M., Zeng, R., et al., 2008. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environ. Sci. Technol., 42(22):8260-8265.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE