CLC number: Q819
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-03-31
Cited: 1
Clicked: 4347
Jun-cai Hou, Fei Liu, Da-xi Ren, Wei-wei Han, Yue-ou Du. Effect of culturing conditions on the expression of key enzymes in the proteolytic system of Lactobacillus bulgaricus[J]. Journal of Zhejiang University Science B, 2015, 16(4): 317-326.
@article{title="Effect of culturing conditions on the expression of key enzymes in the proteolytic system of Lactobacillus bulgaricus",
author="Jun-cai Hou, Fei Liu, Da-xi Ren, Wei-wei Han, Yue-ou Du",
journal="Journal of Zhejiang University Science B",
volume="16",
number="4",
pages="317-326",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400230"
}
%0 Journal Article
%T Effect of culturing conditions on the expression of key enzymes in the proteolytic system of Lactobacillus bulgaricus
%A Jun-cai Hou
%A Fei Liu
%A Da-xi Ren
%A Wei-wei Han
%A Yue-ou Du
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 4
%P 317-326
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400230
TY - JOUR
T1 - Effect of culturing conditions on the expression of key enzymes in the proteolytic system of Lactobacillus bulgaricus
A1 - Jun-cai Hou
A1 - Fei Liu
A1 - Da-xi Ren
A1 - Wei-wei Han
A1 - Yue-ou Du
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 4
SP - 317
EP - 326
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400230
Abstract: The proteolytic system of Lactobacillus bulgaricus breaks down milk proteins into peptides and amino acids, which are essential for the growth of the bacteria. The aim of this study was to determine the expressions of seven key genes in the proteolytic system under different culturing conditions (different phases, initial pH values, temperatures, and nitrogen sources) using real-time polymerase chain reaction (RT-PCR). The transcriptions of the seven genes were reduced by 30-fold on average in the stationary phase compared with the exponential growth phase. The transcriptions of the seven genes were reduced by 62.5-, 15.0-, and 59.0-fold in the strains KLDS 08006, KLDS 08007, and KLDS 08012, respectively, indicating that the expressions of the seven genes were significantly different among strains. In addition, the expressions of the seven genes were repressed in the MRS medium containing casein peptone. The effect of peptone supply on PepX transcription was the weakest compared with the other six genes, and the impact on OppD transcription was the strongest. Moreover, the expressions of the seven genes were significantly different among different strains (P<0.05). All these results indicated that the culturing conditions affected the expression of the proteolytic system genes in Lactobacillus bulgaricus at the transcription level.
[1]Argyle, P.J., Mathson, G.E., Chandan, R.C., 1976. Production of cell-bound proteinase by Lactobacillus bulgaricus and its location in the bacterial cell. J. Appl. Microbiol., 41(1):175-184.
[2]Azcarate-Peril, M.A., Tallon, R., Klaenhamme, T.R., 2009. Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J. Dairy Sci., 92(3):870-886.
[3]Champomier-Vergès, M.C., Marceau, A., Méra, T., et al., 2002. The pepR gene of Lactobacillus sakei positively regulated by anaerobiosis at the transcriptional level. Appl. Environ. Microbiol., 68(8):3873-3877.
[4]Chen, M.M., Li, A.L., Sun, M.C., et al., 2014. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(4):333-342.
[5]Chen, Y.S., Christensen, J.E., Broadbent, J.R., et al., 2003. Identification and characterization of Lactobacillus helveticus PepO2, an endopeptidase with post-proline specificity. Appl. Environ. Microbiol., 69(2):1276-1282.
[6]Chopin, A., 1993. Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol. Rev., 12(1-3):21-37.
[7]Christensen, J.E., Dudley, E.G., Pederson, J.A., et al., 1999. Peptidases and amino acid catabolism in lactic acid bacteria. Anton. Leeuwenhoek, 76(1-4):217-246.
[8]Church, F.C., Swaisgood, H.E., Porter, D.H., et al., 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci., 66(6):1219-1227.
[9]Doeven, M.K., Kok, J., Poolman, B., 2005. Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms. Mol. Microbiol., 57(3):640-649.
[10]Donkor, O.N., Henriksson, A., Vasiljevic, T., et al., 2007. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Lait, 87(1):21-38.
[11]Genay, M., Sadat, L., Gagnaire, V., et al., 2009. prtH2, not prtH, is the ubiquitous cell wall proteinase gene in Lactobacillus helveticus. Appl. Environ. Microbiol., 75(10):3238-3249.
[12]Gilbert, C., Atlan, D., Blanc, B., et al., 1996. A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbruekii subsp. bulgaricus. J. Bacteriol., 178(11):3059-3065.
[13]Gitton, C., Meyrand, M., Wang, J., et al., 2005. Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk. Appl. Environ. Microbiol., 71(11):7152-7163.
[14]Gobbettl, M., Stepaniak, L., de Angelis, M., et al., 2002. Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr., 42(3):223-239.
[15]Griffiths, M.W., Tellez, A.M., 2013. Lactobacillus helveticus: the proteolytic system. Front. Microbiol., 4:30.
[16]Guédon, E., Renault, P., Ehrlich, S.D., et al., 2001. Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J. Bacteriol., 183(12):3614-3622.
[17]Hébert, E.M., Raya, R.R., de Giori, G.S., 1997. Characterization of a cell membrane-associated proteinase from Lactobacillus helveticus CRL 581. Curr. Microbiol., 35(3):161-164.
[18]Hébert, E.M., Raya, R.R., de Giori, G.S., 2002. Modulation of the cell-surface proteinase activity of thermophilic lactobacilli by the peptide supply. Curr. Microbiol., 45(6):385-389.
[19]Jensen, M.P., Vogensen, F.K., Ardö, Y., 2009. Variation in caseinolytic properties of six cheese related Lactobacillus helveticus strains. Int. Dairy J., 19(11):661-668.
[20]Kunji, E.R.S., Hagting, A., de Vries, C.J., et al., 1995. Transport of β-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem., 270(4):1569-1574.
[21]Kunji, E.R.S., Mierau, I., Hagfing, A., et al., 1996. The proteolytic systems of lactic acid bacteria. Anton. Leeuwenhoek, 70(2-4):187-221.
[22]Law, B.A., 1978. Peptide utilization by group N streptococci. J. Gen. Microbiol., 105(1):113-118.
[23]Liu, E., Zheng, H., Hao, P., et al., 2012. A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey. Curr. Microbiol., 65(6):742-751.
[24]Liu, M.J., Bayjanov, J.R., Renckens, B., et al., 2010. The proteolytic system of lactic acid bacteria revisited a genomic comparison. BMC Genomics, 11:36.
[25]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4):402-408.
[26]Matar, C., LeBlanc, J.G., Martin, L., et al., 2003. Biologically active peptides released from fermented milk: role and functions. In: Farnworth, E.R. (Ed.), Hand Book of Fermented Functional Foods, 1st Ed. CRC Press, Boca Raton, FL, p.177-201.
[27]Mayo, B., Kok, J., Venema, K., 1991. Molecular cloning and sequence analysis of the X-propyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol., 57(1):38-44.
[28]Neviani, E., Giraffa, G., Brizzi, A., et al., 1995. Amino acid requirements and peptidase activities of Streptococcus salivarius subsp. thermophilus. J. Appl. Microbiol., 79(3):302-307.
[29]Niesters, H.G., 2001. Quantitation of viral load using real-time amplification. Methods, 25(4):419-429.
[30]Peltoniemi, K., Vesanto, E., Palva, A., 2002. Genetic characterization of an oligopeptide transport system from Lactobacillus delbrueckii subsp. bulgaricus. Arch. Microbiol., 177(6):457-467.
[31]Picon, A., García-Casado, M.A., Nuñez, M., 2010. Proteolytic activities, peptide utilization and oligopeptide transport systems of wild Lactococcus lactis strains. Int. Dairy J., 20(3):156-162.
[32]Roland, J.S., 1999. Multi-domain, cell-envelope proteinases of lactic acid bacteria. Anton. Leeuwenhoek, 76(1-4):139-155.
[33]Sánchez, B., Champomier-Vergès, M.C., Collado Mdel, C., et al., 2007. Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Appl. Environ. Microbiol., 73(20):6450-6459.
[34]Savijoki, K., Palva, A., 2000. Purification and molecular characterization of a tripeptidase (PepT) from Lactobacillus helveticus. Appl. Environ. Microbiol., 66(2):794-800.
[35]Savijoki, K., Ingmer, H., Varmanen, P., 2006. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol., 71(4):394-406.
[36]Schmittgen, T.D., Livak, K.J., 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc., 3(6):1101-1108.
[37]Simova, E., Beshkova, D., 2007. Effect of growth phase and growth medium on peptidase activities of starter lactic acid bacteria. Lait, 87(6):555-573.
[38]Smeianov, V.V., Wechter, P., Broadbent, J.R., et al., 2007. Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. Appl. Environ. Microbiol., 73(8):2661-2672.
[39]Stefanitsi, D., Garel, J.R., 1997. A zinc-dependent proteinase from the cell wall of Lactobacillus delbrueckii subsp. bulgaricus. Lett. Appl. Microbiol., 24(3):180-184.
[40]Stucky, K., Klein, J.R., Schüller, A., et al., 1995. Cloning and DNA sequence analysis of pepQ, a prolidase gene from Lactobacillus delbrueckii subsp. lactis DSM7290 and partial characterization of its product. Mol. Gen. Genet., 247(4):494-500.
[41]Szwajkowska, M., Wolanciuk, A., Barłowska, J., et al., 2011. Bovine milk proteins as the source of bioactive peptides influencing the consumers’ immune system—a review. Anim. Sci. Pap. Rep., 29(4):269-280.
[42]Tynkkynen, S., Buist, G., Kunji, E., et al., 1993. Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol., 175(23):7523-7532.
[43]Ulve, V.M., Monnet, C., Valence, F., et al., 2008. RNA extraction from cheese for analysis of in situ gene expression of Lactococcus lactis. J. Appl. Microbiol., 105(5):1327-1333.
[44]Vermeulen, N., Pavlovic, M., Ehrmann, M.A., et al., 2005. Functional characterization of the proteolytic system of Lactobacillus sanfranciscensis DSM 20451T during growth in sourdough. Appl. Environ. Microbiol., 71(10):6260-6266.
[45]Wakai, T., Yamamoto, N., 2012. Antihypertensive peptides specific to Lactobacillus helveticus fermented milk. In: Sammour, R.H. (Ed.), Biotechnology—Molecular Studies and Novel Applications for Improved Quality of Human Life. Biochemistry, Genetics and Molecular Biology. InTech, p.159-172.
[46]Wang, J.C., Zhang, W.Y., Zhong, Z., et al., 2012. Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk. J. Ind. Microbiol. Biotechnol., 39(1):191-206.
[47]Wu, R., Zhang, W.Y., Sun, T.S., et al., 2011. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int. J. Food Microbiol., 147(3):181-187.
Open peer comments: Debate/Discuss/Question/Opinion
<1>