CLC number: S831.5
On-line Access: 2015-12-04
Received: 2015-06-28
Revision Accepted: 2015-09-14
Crosschecked: 2015-11-18
Cited: 5
Clicked: 5459
Hua-li Li, Zong-jun Li, Zhong-shan Wei, Ting Liu, Xiao-zuo Zou, Yong Liao, Yu Luo. Long-term effects of oral tea polyphenols and Lactobacillus brevis M8 on biochemical parameters, digestive enzymes, and cytokines expression in broilers[J]. Journal of Zhejiang University Science B, 2015, 16(12): 1019-1026.
@article{title="Long-term effects of oral tea polyphenols and Lactobacillus brevis M8 on biochemical parameters, digestive enzymes, and cytokines expression in broilers",
author="Hua-li Li, Zong-jun Li, Zhong-shan Wei, Ting Liu, Xiao-zuo Zou, Yong Liao, Yu Luo",
journal="Journal of Zhejiang University Science B",
volume="16",
number="12",
pages="1019-1026",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500160"
}
%0 Journal Article
%T Long-term effects of oral tea polyphenols and Lactobacillus brevis M8 on biochemical parameters, digestive enzymes, and cytokines expression in broilers
%A Hua-li Li
%A Zong-jun Li
%A Zhong-shan Wei
%A Ting Liu
%A Xiao-zuo Zou
%A Yong Liao
%A Yu Luo
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 12
%P 1019-1026
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500160
TY - JOUR
T1 - Long-term effects of oral tea polyphenols and Lactobacillus brevis M8 on biochemical parameters, digestive enzymes, and cytokines expression in broilers
A1 - Hua-li Li
A1 - Zong-jun Li
A1 - Zhong-shan Wei
A1 - Ting Liu
A1 - Xiao-zuo Zou
A1 - Yong Liao
A1 - Yu Luo
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 12
SP - 1019
EP - 1026
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500160
Abstract: This study investigates the long-term effects of oral tea polyphenols (TPs) and Lactobacillus brevis M8 (LB) on biochemical parameters, digestive enzymes, and cytokines expression in broilers. In experiment 1, 240 broiler chickens were selected to investigate the effects of 0.06 g/kg body weight (BW) TP and 1.0 ml/kg BW LB on broilers; in experiment 2, 180 broiler chickens were assigned randomly to three groups to investigate the effects of different dosages of TP (0.03, 0.06, and 0.09 g/kg BW) combined with 1.0 ml/kg BW LB on broilers; in experiment 3, 180 broiler chickens were assigned randomly to three groups to investigate the effects of different dosages of LB (0.5, 1.0, and 1.5 ml/kg BW) combined with 0.06 g/kg BW TP on broilers. The results showed that TP and LB affected serum biochemical parameters, and TP reduced serum cholesterol (CHO) and low-density lipoprotein cholesterol (LDL-C) abundances in a dosage-dependent manner (P<0.05) on Day 84. Meanwhile, broilers fed a diet supplemented with TP or LB had a lower intestinal lipase activity on Day 84 compared with the control group (P<0.05). Middle and high dosages of TP increased pancreatic lipase and proventriculus pepsin activities (P<0.05). Also middle and high dosages of LB significantly enhanced pancreatic lipase activity (P<0.05), while high LB supplementation inhibited intestinal trypsase (P<0.05) on Day 84. Furthermore, both TP and LB reduced intestinal cytokine expression and nuclear factor-κ B (NF-κB) mRNA level on Days 56 and 84. In conclusion, long-term treatment of TP and LB improved lipid metabolism and digestive enzymes activities, and affected intestinal inflammatory status, which may be associated with the NF-κB signal.
[1]Berlec, A., Ravnikar, M., Strukelj, B., 2012. Lactic acid bacteria as oral delivery systems for biomolecules. Pharmazie, 67(11):891-898.
[2]Bornhoeft, J., Castaneda, D., Nemoseck, T., et al., 2012. The protective effects of green tea polyphenols: lipid profile, inflammation, and antioxidant capacity in rats fed an atherogenic diet and dextran sodium sulfate. J. Med. Food, 15(8):726-732.
[3]Burgain, J., Scher, J., Francius, G., et al., 2014. Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components. Adv. Colloid Interf. Sci., 213:21-35.
[4]Charron, L., Geffard, O., Chaumot, A., et al., 2014. Influence of molting and starvation on digestive enzyme activities and energy storage in Gammarus fossarum. PLoS ONE, 9(4):e96393.
[5]Chen, C.Y., Tsen, H.Y., Lin, C.L., et al., 2012. Oral administration of a combination of select lactic acid bacteria strains to reduce the Salmonella invasion and inflammation of broiler chicks. Poult. Sci., 91(9):2139-2147.
[6]Chen, Z.M., Lin, Z., 2015. Tea and human health: biomedical functions of tea active components and current issues. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(2):87-102.
[7]Choi, A.J., Buisson, N., Kim, H.T., 2015. Digestion characteristics and kinetic analysis of bio-molecules in a simulated human intestinal system. Integr. Food Nutr. Metab., 2(3):189-192.
[8]Chon, H., Choi, B., Jeong, G., et al., 2010. Suppression of proinflammatory cytokine production by specific metabolites of Lactobacillus plantarum 10hk2 via inhibiting NF-κB and p38 MAPK expressions. Comp. Immunol. Microbiol. Infect. Dis., 33(6):e41-e49.
[9]Eastep, J., Chen, G.X., 2015. The relationships of high-fat diet and metabolism of lipophilic vitamins. Integr. Food Nutr. Metab., 2(3):174-179.
[10]Eid, Y.Z., Ohtsuka, A., Hayashi, K., 2003. Tea polyphenols reduce glucocorticoid-induced growth inhibition and oxidative stress in broiler chickens. Br. Poult. Sci., 44(1):127-132.
[11]Guan, R.F., Lyu, F., Chen, X.Q., et al., 2013. Meat quality traits of four Chinese indigenous chicken breeds and one commercial broiler stock. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(10):896-902.
[12]Hirai, F., Matsui, T., 2015. Status of food intake and elemental nutrition in patients with Crohn’s disease. Integr. Food Nutr. Metab., 2(2):148-150.
[13]Huang, J.B., Zhang, Y., Zhou, Y.B., et al., 2013. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J. Agric. Food Chem., 61(36):8565-8572.
[14]Ito, M., Oishi, K., Yoshida, Y., et al., 2015. Effects of lactic acid bacteria on low-density lipoprotein susceptibility to oxidation and aortic fatty lesion formation in hyperlipidemic hamsters. Benef. Microbes, 6(3):287-293.
[15]Joo, H.M., Hyun, Y.J., Myoung, K.S., et al., 2011. Lactobacillus johnsonii HY7042 ameliorates Gardnerella vaginalis-induced vaginosis by killing Gardnerella vaginalis and inhibiting NF-κB activation. Int. Immunopharmacol., 11(11):1758-1765.
[16]Kanwar, J., Taskeen, M., Mohammad, I., et al., 2012. Recent advances on tea polyphenols. Front. Biosci. (Elite Ed.), 4:111-131.
[17]Kishino, S., Takeuchi, M., Park, S.B., et al., 2013. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. PNAS, 110(44):17808-17813.
[18]Kumari, A., Catanzaro, R., Marotta, F., 2011. Clinical importance of lactic acid bacteria: a short review. Acta Biomed., 82(3):177-180.
[19]Kusano, R., Andou, H., Fujieda, M., et al., 2008. Polymer-like polyphenols of black tea and their lipase and amylase inhibitory activities. Chem. Pharm. Bull., 56(3):266-272.
[20]Lazo, J.P., Mendoza, R., Holt, G.J., et al., 2007. Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture, 265(1-4):194-205.
[21]Li, Y.W., Zhang, Y., Zhang, L., et al., 2014. Protective effect of tea polyphenols on renal ischemia/reperfusion injury via suppressing the activation of TLR4/NF-κB p65 signal pathway. Gene, 542(1):46-51.
[22]Liu, T., Li, Z.J., Liao, Y., et al., 2014. Effects of Lactobacillus and tea polyphenols on digestive enzyme activity in broilers. Chin. J. Anim. Sci., 50(3):78-82 (in Chinese).
[23]Michlmayr, H., Kneifel, W., 2014. β-Glucosidase activities of lactic acid bacteria: mechanisms, impact on fermented food and human health. FEMS Microbiol. Lett., 352(1):1-10.
[24]Murakami, A., 2014. Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Arch. Biochem. Biophys., 557:3-10.
[25]NRC (National Research Council), 1994. Nutrient Requirements of Poultry. National Academy Press, Washington, DC.
[26]Park, J.E., Oh, S.H., Cha, Y.S., 2014. Lactobacillus brevis OPK-3 isolated from kimchi inhibits adipogenesis and exerts anti-inflammation in 3T3-L1 adipocyte. J. Sci. Food Agric., 94(12):2514-2520.
[27]Postal, M., Appenzeller, S., 2015. The importance of cytokines and autoantibodies in depression. Autoimmun. Rev., 14(1):30-35.
[28]Qin, B.L., Polansky, M.M., Harry, D., et al., 2010. Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats. Mol. Nutr. Food Res., 54(S1):S14-S23.
[29]Rashti, Z., Koohsari, H., 2015. Antibacterial effects of supernatant of lactic acid bacteria isolated from different Dough’s in Gorgan city in north of Iran. Integr. Food Nutr. Metab., 2(3):193-196.
[30]Shen, C.L., Samathanam, C., Tatum, O.L., et al., 2011a. Green tea polyphenols avert chronic inflammation-induced myocardial fibrosis of female rats. Inflamm. Res., 60(7):665-672.
[31]Shen, C.L., Yeh, J.K., Samathanam, C., et al., 2011b. Protective actions of green tea polyphenols and alfacalcidol on bone microstructure in female rats with chronic inflammation. J. Nutr. Biochem., 22(7):673-680.
[32]Singh, M., Singh, R., Bhui, K., et al., 2011. Tea polyphenols induce apoptosis through mitochondrial pathway and by inhibiting nuclear factor-κB and Akt activation in human cervical cancer cells. Oncol. Res., 19(6):245-257.
[33]Wu, L., Wang, W., Yao, K., et al., 2013. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs. PLoS ONE, 8(7):e69502.
[34]Yang, F., Hou, C., Zeng, X., et al., 2015. The use of lactic acid bacteria as a probiotic in Swine diets. Pathogens, 4(1):34-45.
[35]Yin, J., Ren, W., Liu, G., et al., 2013a. Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic. Res., 47(12):1027-1035.
[36]Yin, J., Ren, W.K., Wu, X.S., et al., 2013b. Oxidative stress-mediated signaling pathways: a review. J. Food Agric. Environ., 11(2):132-139.
[37]Yin, J., Wu, M.M., Xiao, H., et al., 2014a. Development of an antioxidant system after early weaning in piglets. J. Anim. Sci., 92(2):612-619.
[38]Yin, J., Ren, W., Duan, J., et al., 2014b. Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs. Amino Acids, 46(4):883-892.
[39]Yin, J., Liu, M., Ren, W., et al., 2015a. Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets. PLoS ONE, 10(4):e0122893.
[40]Yin, J., Duan, J., Cui, Z., et al., 2015b. Hydrogen peroxide-induced oxidative stress activates NF-κB and Nrf2/Keap1 signals and triggers autophagy in piglets. RSC Adv., 5(20):15479-15486.
[41]Zhong, L., Zhang, X.F., Covasa, M., 2014. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol., 20(24):7878-7886.
[42]中文摘要
[43]题目:茶多酚和乳酸菌影响肉鸡血液生化、消化酶以及肠道细胞因子表达的研究
[44]目的:茶多酚和乳酸菌在动物营养上的作用已经得到广泛的验证,但是关于二者联合作用的研究鲜有报道.本文采用肉鸡作为试验模型,研究了茶多酚和乳酸菌联合灌喂对肉鸡血液生化、消化酶以及肠道细胞因子表达的影响.
[45]创新点:本研究首次采用联合灌喂茶多酚和乳酸菌,探讨了二者联合作用对肉鸡的影响,并通过模拟生产,长期观察了茶多酚和乳酸菌对肉鸡的影响.
[46]方法:对肉仔鸡灌喂不同浓度的茶多酚和乳酸菌,在第56和84天随机屠宰取样.收集血液检查血液生化指标,并测定消化酶活性.取肠道样品提取RNA,采用反转录聚合酶链反应(RT-PCR)检测细胞因子的表达以及相关信号通路的激活.
[47]结论:长期灌喂茶多酚和乳酸菌改善了肉鸡脂质代谢、消化酶活性以及炎症反应,其机制可能是通过影响了NF-κB信号通路.
[48]关键词:茶多酚;乳酸菌;NF-κB;肉鸡
Open peer comments: Debate/Discuss/Question/Opinion
<1>