Full Text:   <975>

Summary:  <307>

CLC number: S476

On-line Access: 2016-12-05

Received: 2016-03-14

Revision Accepted: 2016-07-12

Crosschecked: 2016-11-17

Cited: 0

Clicked: 1969

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Young Soo Kim

http://orcid.org/0000-0001-5658-6889

Yongho Jeon

http://orcid.org/0000-0001-8182-2548

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.12 P.931-940

http://doi.org/10.1631/jzus.B1600117


Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits


Author(s):  Young Soo Kim, Kotnala Balaraju, Yongho Jeon

Affiliation(s):  Department of Bioresource Sciences, Andong National University, Andong 36729, Korea; more

Corresponding email(s):   yongbac@andong.ac.kr

Key Words:  Anthracnose, Antagonistic activity, Biological control, White rot, Apple


Young Soo Kim, Kotnala Balaraju, Yongho Jeon. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits[J]. Journal of Zhejiang University Science B, 2016, 17(12): 931-940.

@article{title="Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits",
author="Young Soo Kim, Kotnala Balaraju, Yongho Jeon",
journal="Journal of Zhejiang University Science B",
volume="17",
number="12",
pages="931-940",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600117"
}

%0 Journal Article
%T Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits
%A Young Soo Kim
%A Kotnala Balaraju
%A Yongho Jeon
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 12
%P 931-940
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600117

TY - JOUR
T1 - Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits
A1 - Young Soo Kim
A1 - Kotnala Balaraju
A1 - Yongho Jeon
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 12
SP - 931
EP - 940
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600117


Abstract: 
In this study, plant growth-promoting rhizobacteria (PGPR) were evaluated as potential biocontrol agents against postharvest pathogens of apple fruits. In vitro bioassays revealed that, out of 30 isolates screened, isolates APEC136 and APEC170 had the most significant inhibitory effects against the mycelial growth of several fungal pathogens. Analysis of 16S ribosomal RNA (rRNA) sequences identified the two effective isolates as Paenibacillus polymyxa and Bacillus subtilis, respectively. The two strains showed greater growth in brain-heart infusion broth than in other growth media. Treatment of harvested apples with suspensions of either strain reduced the symptoms of anthracnose disease caused by two fungal pathogens, Colletotrichum gloeosporioides and Colletotrichum acutatum, and white rot disease caused by Botryosphaeria dothidea. Increased productions of amylase and protease by APEC136, and increased productions of chitinase, amylase, and protease by APEC170 might have been responsible for inhibiting mycelial growth. The isolates caused a greater reduction in the growth of white rot than of anthracnose. These results indicate that the isolates APEC136 and APEC170 are promising agents for the biocontrol of anthracnose and white rot diseases in apples after harvest, and suggest that these isolates may be useful in controlling these diseases under field conditions.

多粘类芽孢杆菌APEC136和枯草芽孢杆菌APEC170对苹果采后病害生物防治的影响

目的:研究APEC136和APEC170对苹果采后炭疽病和白腐病的生物防治作用。
方法:选择APEC136和APEC170两菌株为对象,通过16S rRNA序列分析进行菌种鉴定;研究不同的培养基、温度和pH值等条件对APEC136和APEC170生长影响;测定其对几丁质酶,淀粉酶,纤维素酶和蛋白酶的产量和活性的影响;分析其对胶孢炭疽菌(Colletotrichum gloeosporioides)、尖孢炭疽(Colletotrichum acutatum)和葡萄座腔菌(Botryosphaeria dothidea)的菌丝生长抑制作用,观察苹果采后炭疽病和白腐病症状的变化。
结论:16S rRNA序列分析结果发现两个拮抗菌株分别为多粘类芽孢杆菌和枯草芽孢杆菌。在脑心浸液肉汤(BHI)培养基中,这两个菌株生长最快。体外生物测定表明,在筛选的30株菌株中,APEC136和APEC170对胶孢炭疽菌、尖孢炭疽和葡萄座腔菌的菌丝生长的抑制作用最显著。APEC136和APEC170均减轻了苹果采后由病原真菌引起的炭疽病和白腐病症状。另外,APEC136增加了淀粉酶和蛋白酶产量,APEC170增加了几丁质酶、淀粉酶和蛋白酶产量,这些可能是其抑制菌丝生长的原因。综上所述,菌株APEC136和APEC170是有效的苹果采后炭疽病和白腐病的生物防治剂,可用于野外条件下的疾病控制。

关键词:炭疽病;拮抗活性;生物防治;白腐病;苹果

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Berg, G., 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol., 84(1):11-18.

[2]Chen, X., Zhang, Y., Fu, X., et al., 2016. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biol. Technol., 115:113-121.

[3]Cho, S.J., Lee, S.K., Cha, B.J., et al., 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett., 223(1):47-51.

[4]Choi, I.Y., 2011. First report of bark dieback on blueberry caused by Botryosphaeria dothidea in Korea. Plant Dis., 95(2):227.

[5]Dhingra, O.D., Sinclair, J.B., 1985. Basic Plant Pathology Methods. CRC Press Inc., Boca Raton, FL, USA, p.355.

[6]Dijksterhuis, J., Sanders, M., Gorris, L.G.M., et al., 1999. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J. Appl. Microbiol., 86(1):13-21.

[7]Droby, S., 2006. Biological control of postharvest diseases of fruits and vegetables: difficulties and challenges. Phytopathol. Pol., 39:105-117.

[8]Droby, S., Wisniewski, M., Macarisin, D., et al., 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol. Technol., 52(2):137-145.

[9]Fleming, H.P., Etchells, J.L., Costilow, R.N., 1975. Microbial inhibition by an isolate of Pediococcus from cucumber brines. Appl. Microbiol., 30(6):1040-1042.

[10]Haas, D., Défago, G., 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol., 3:307-319. https://dx.doi.org/10.1038/nrmicro1129

[11]Han, J., Chen, D., Huang, J., et al., 2015. Antifungal activity and biocontrol potential of Paenibacillus polymyxa HT16 against white rot pathogen (Coniella diplodiella Speq.) in table grapes. Biocont. Sci. Technol., 25(10):1120-1132. https://dx.doi.org/10.1080/09583157.2015.1036003

[12]Hankin, L., Anagnostakis, S.L., 1977. Solid media containing carboxymethylcellulose to detect Cx cellulase activity of micro-organisms. Microbiology, 98(1):109-115.

[13]Heulin, T., Berge, O., Mavingui, P., et al., 1994. Bacillus polymyxa and Rahnella aquatilis, the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils. Eur. J. Soil Biol., 30(1):35-42.

[14]Janisiewicz, W.J., Korsten, L., 2002. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol., 40:411-441.

[15]Kelman, A., 1989. Introduction: the importance of research on the control of postharvest diseases of perishable food crops. Phytopathol., 79(12):1374.

[16]Kim, H.M., Lee, K.J., Chae, J.C., 2015. Postharvest biological control of Colletotrichum acutatum on apple by Bacillus subtilis HM1 and the structural identification of antagonists. J. Microbiol. Biotechnol., 25(11):1954-1959.

[17]Kim, K.W., Kim, K.R., Park, E.W., 2005. An infection model of apple white rot based on conidial germination and appressorium formation of Botryosphaeria dothidea. Plant Pathol. J., 21(4):322-327.

[18]Kim, Y.S., Balaraju, K., Jeon, Y., 2016. Biological control of apple anthracnose by Paenibacillus polymyxa APEC128, an antagonistic rhizobacterium. Plant Pathol. J., 32(3):251-259.

[19]Kong, H.G., Kim, J.C., Choi, G.J., et al., 2012. Production of surfactin and iturin by Bacillus licheniformis N1 responsible for plant disease control activity. Plant Pathol. J., 26(2):170-177.

[20]Lee, D.H., Kim, D.H., Jeon, Y.A., et al., 2007. Molecular and cultural characterization of Colletotrichum spp. causing bitter rot of apples in Korea. Plant Pathol. J., 23(2):37-44.

[21]Lee, G.W., Ko, J.A., Oh, B.T., et al., 2012. Biological control of postharvest diseases of apples, peaches and nectarines by Bacillus subtilis S16 isolated from halophytes rhizosphere. Biocont. Sci. Technol., 22(3):351-361.

[22]Li, J., Liu, W., Luo, L., et al., 2015. Expression of Paenibacillus polymyxa β-1,3-1,4-glucanase in Streptomyces lydicus A01 improves its biocontrol effect against Botrytis cinerea. Biol. Cont., 90:141-147.

[23]Liu, J., Sui, Y., Wisniewski, M., et al., 2013. Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int. J. Food Microbiol., 167(2):153-160.

[24]Mari, M., Neri, F., Bertolini, P., 2009. Management of important diseases in Mediterranean high value crops. Stewart Postharvest Rev., 5(2):1-10. https://doi.org/10.2212/spr.2009.2.2

[25]Mari, M., Guidarelli, M., Martini, C., et al., 2012. First report of Colletotrichum acutatum causing bitter rot on apple in Italy. Plant Dis., 96(1):144.

[26]Ogata, T., Sano, T., Harada, Y., 2000. Botryosphaeria spp. isolated from apple and several deciduous fruit trees are divided into three groups based on the production of warts on twigs, size of conidia, and nucleotide sequences of nuclear ribosomal DNA ITS regions. Mycoscience, 41(4):331-337. https://doi.org/10.1007/BF02463946

[27]Ongena, M., Jacques, P., 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol., 16(3):115-125.

[28]Ongena, M., Jacques, P., Touré, Y., et al., 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol., 69(1):29-38.

[29]Park, J.W., Balaraju, K., Kim, J.W., et al., 2013. Systemic resistance and growth promotion of chili pepper induced by an antibiotic producing Bacillus vallismortis strain BS07. Biol. Cont., 65(2):246-257.

[30]Piggot, P.J., Hilbert, D.W., 2004. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol., 7(6):579-586.

[31]Qi, D.M., Hui, M., Liang, Q.M., et al., 2005. Postharvest biological control of blue mold and black spot on apple-pear (Pyrus bretschneideri Rehd.) fruit by Bacillus subtilis H110. Chin. J. Appl. Environ. Biol., 11(2):171-174.

[32]Roberts, W.K., Selitrennikoff, C.P., 1988. Plant and bacterial chitinases differ in antifungal activity. Microbiology, 134:169-176.

[33]Rosado, A.S, Seldin, L., 1993. Production of a potentially novel antimicrobial substance by Bacillus polymyxa. World J. Microbiol. Biotechnol., 9(5):521-528.

[34]SAS Institute, 1995. JMP Statistics and Graphics Guide. SAS Institute Inc., Cary, North Carolina, Version 3.1, p.65-95.

[35]Shaw, J.F., Lin, F.P., Chen, S.C., et al., 1995. Purification and properties of an extracellular α amylase from Thermos sp. Bot. Bull. Acad. Sin., 36(3):195-200.

[36]Singh, H.P., Singh, T.A., 1993. The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza, 4(1):37-43.

[37]Talibi, I., Boubaker, H., Boudyach, E.H., et al., 2014. Alternative methods for the control of postharvest citrus diseases. J. Appl. Microbiol., 117(1):1-17.

[38]Tamura, K., Dudley, J., Nei, M., et al., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8):1596-1599. https://dx.doi.org/10.1093/molbev/msm092

[39]Tang, W., Ding, Z., Zhou, Z.Q., et al., 2012. Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Dis., 96(4):486-496.

[40]Teixidó, N., Torres, R., Viñas, I., et al., 2011. Biological control of postharvest diseases in fruit and vegetables. In: Lacroix, C. (Ed.), Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and Beverage Biopreservation. Woodhead Publishing Limited, Cambridge, UK, p.364-402.

[41]Touré, Y., Ongena, M., Jacques, P., et al., 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol., 96(5):1151-1160.

[42]Vijayalakshmi, K.S., Abha, S., Chander, P., 2012. Isolation and characterization of Bacillus subtilis KC3 for amylolytic activity. Inter. J. Biosci. Biochem. Bioinform., 2(5):336-341.

[43]Weir, B.S., Johnston, P.R., Damm, U., 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol., 73:115-180.

[44]Weisburg, W.G., Barns, S.M., Pelletier, D.A., et al., 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol., 173(2):697-703.

[45]Wharton, P.S., Diéguez-Uribeondo, J., 2004. The biology of “Colletotrichum acutatum”. Anal. Jardín Botánico Madrid, 61(1):3-22.

[46]Yánez-Mendizábal, V., Usall, J., Viñas, I., et al., 2011. Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocont. Sci. Technol., 21(4):409-426.

[47]Yánez-Mendizábal, V., Zeriouh, H., Viñas, I., et al., 2012. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur. J. Plant Pathol., 132(4):609-619.

[48]Zhang, Z., Yang, D., Yang, B., et al., 2013. β-Aminobutyric acid induces resistance of mango fruit to postharvest anthracnose caused by Colletotrichum gloeosporioides and enhances activity of fruit defense mechanisms. Sci. Hort., 160:78-84.

[49]Zhu, S.J., 2006. Non-chemical approaches to decay control in postharvest fruit. In: Noureddine, B., Norio, S. (Eds.), Advances in Postharvest Technologies for Horticultural Crops. Research Signpost, Trivandrum, India, p.297-313.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE