Full Text:   <2602>

Summary:  <1604>

CLC number: Q945; S143; S565

On-line Access: 2017-06-05

Received: 2016-06-01

Revision Accepted: 2016-08-26

Crosschecked: 2017-05-26

Cited: 0

Clicked: 4335

Citations:  Bibtex RefMan EndNote GB/T7714


Shi-yu Qin


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.6 P.512-521


Uptake, transport and distribution of molybdenum in two oilseed rape (Brassica napus L.) cultivars under different nitrate/ammonium ratios

Author(s):  Shi-yu Qin, Xue-cheng Sun, Cheng-xiao Hu, Qi-ling Tan, Xiao-hu Zhao

Affiliation(s):  Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; more

Corresponding email(s):   hucx@mail.hzau.edu.cn

Key Words:  Brassica napus L., Nitrogen source, Transport, Subcellular distribution, Xylem, Phloem

Shi-yu Qin, Xue-cheng Sun, Cheng-xiao Hu, Qi-ling Tan, Xiao-hu Zhao. Uptake, transport and distribution of molybdenum in two oilseed rape (Brassica napus L.) cultivars under different nitrate/ammonium ratios[J]. Journal of Zhejiang University Science B, 2017, 18(6): 512-521.

@article{title="Uptake, transport and distribution of molybdenum in two oilseed rape (Brassica napus L.) cultivars under different nitrate/ammonium ratios",
author="Shi-yu Qin, Xue-cheng Sun, Cheng-xiao Hu, Qi-ling Tan, Xiao-hu Zhao",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Uptake, transport and distribution of molybdenum in two oilseed rape (Brassica napus L.) cultivars under different nitrate/ammonium ratios
%A Shi-yu Qin
%A Xue-cheng Sun
%A Cheng-xiao Hu
%A Qi-ling Tan
%A Xiao-hu Zhao
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 6
%P 512-521
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600249

T1 - Uptake, transport and distribution of molybdenum in two oilseed rape (Brassica napus L.) cultivars under different nitrate/ammonium ratios
A1 - Shi-yu Qin
A1 - Xue-cheng Sun
A1 - Cheng-xiao Hu
A1 - Qi-ling Tan
A1 - Xiao-hu Zhao
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 6
SP - 512
EP - 521
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600249

Objectives: To investigate the effects of different nitrate sources on the uptake, transport, and distribution of molybdenum (Mo) between two oilseed rape (Brassica napus L.) cultivars, L0917 and ZS11. Methods: A hydroponic culture experiment was conducted with four nitrate/ammonium (NO3:NH4+) ratios (14:1, 9:6, 7.5:7.5, and 1:14) at a constant nitrogen concentration of 15 mmol/L. We examined Mo concentrations in roots, shoots, xylem and phloem sap, and subcellular fractions of leaves to contrast Mo uptake, transport, and subcellular distribution between ZS11 and L0917. Results: Both the cultivars showed maximum biomass and Mo accumulation at the 7.5:7.5 ratio of NO3:NH4+ while those were decreased by the 14:1 and 1:14 treatments. However, the percentages of root Mo (14.8% and 15.0% for L0917 and ZS11, respectively) were low under the 7.5:7.5 treatment, suggesting that the equal NO3:NH4+ ratio promoted Mo transportation from root to shoot. The xylem sap Mo concentration and phloem sap Mo accumulation of L0917 were lower than those of ZS11 under the 1:14 treatment, which suggests that higher NO3:NH4+ ratio was more beneficial for L0917. On the contrary, a lower NO3:NH4+ ratio was more beneficial for ZS11 to transport and remobilize Mo. Furthermore, the Mo concentrations of both the cultivars’ leaf organelles were increased but the Mo accumulations of the cell wall and soluble fraction were reduced significantly under the 14:1 treatment, meaning that more Mo was accumulated in organelles under the highest NO3:NH4+ ratio. Conclusions: This investigation demonstrated that the capacities of Mo absorption, transportation and subcellular distribution play an important role in genotype-dependent differences in Mo accumulation under low or high NO3:NH4+ ratio conditions.


方法:将甘蓝型油菜L0917和ZS11的幼苗在正常营养液培养20天后,分别转移至4种NO3:NH4+比(14:1、9:6、7.5:7.5、1:14)且总氮为15 mmol/L的营养液中培养15天后收获。采用原子吸收分光光度计-石墨炉法测定根、茎和叶不同部位钼含量,木质部和韧皮部液钼含量,叶肉细胞细胞壁组分、细胞器组分和可溶性组分钼含量。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Babalar, M., Sokri, S.M., Lesani, H., et al., 2015. Effects of nitrate:ammonium ratios on vegetative growth and mineral element composition in leaves of apple. J. Plant Nutr., 38(14):2247-2258.

[2]Barłóg, P., Grzebisz, W., 2004a. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). I. Growth dynamics and seed yield. J. Agron. Crop Sci., 190(5):305-313.

[3]Barłóg, P., Grzebisz, W., 2004b. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). II. Nitrogen uptake dynamics and fertilizer efficiency. J. Agron. Crop Sci., 190(5):314-323.

[4]Behrens, T., Horst, W.J., Wiesler, F., 2002. Effect of rate, timing and form of nitrogen application on yield formation and nitrogen balance in oilseed rape production. In: Horst, W.J., Schenk, M.K., Bürkert, A., et al. (Eds.), Plant Nutrition. Springer Netherlands, p.800-801.

[5]Britto, D.T., Kronzucker, H.J., 2002. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol., 159(6):567-584.

[6]Cao, Q., Zhao, C., Qin, J., et al., 2012. Analysis on content of soil-available molybdenum and its influencing factors in some plantations in Hainan rubber planting areas. J. Southern Agric., 43(10):1514-1517 (in Chinese).

[7]Chatterjee, C., Nautiyal, N., 2001. Molybdenum stress affects viability and vigor of wheat seeds. J. Plant Nutr., 24(9): 1377-1386.

[8]Dickson, R.W., Fisher, P.R., Argo, W.R., et al., 2016. Solution ammonium:nitrate ratio and cation/anion uptake affect acidity or basicity with floriculture species in hydroponics. Sci. Hortic., 200:36-44.

[9]Esteban, R., Ariz, I., Cruz, C., et al., 2016. Review: mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci., 248:92-101.

[10]Fu, X., Dou, C., Chen, Y., et al., 2011. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J. Hazard. Mater., 186(1):103-107.

[11]Hale, K.L., McGrath, S.P., Lombi, E., et al., 2001. Molybdenum sequestration in Brassica species. A role for anthocyanins? Plant Physiol., 126(4):1391-1402.

[12]Havemeyer, A., Lang, J., Clement, B., 2011. The fourth mammalian molybdenum enzyme mARC: current state of research. Drug Metab. Rev., 43(4):524-539.

[13]Hille, R., Nishino, T., Bittner, F., 2011. Molybdenum enzymes in higher organisms. Coordin. Chem. Rev., 255(9-10): 1179-1205.

[14]Ide, Y., Kusano, M., Oikawa, A., et al., 2011. Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/sulphur metabolism in Arabidopsis thaliana. J. Exp. Bot., 62(4):1483-1497.

[15]Jampeetong, A., Brix, H., 2009. Effects of NH4+ concentration on growth, morphology and NH4+ uptake kinetics of Salvinia natans. Ecol. Eng., 35(5):695-702.

[16]Jongruaysup, S., Dell, B., Bell, R.W., 1994. Distribution and redistribution of molybdenum in black gram (Vigna mungo L. Hepper) in relation to molybdenum supply. Ann. Bot., 73(2):161-167.

[17]Jongruaysup, S., Dell, B., Bell, R.W., et al., 1997. Effect of molybdenum and inorganic nitrogen on molybdenum redistribution in black gram (Vigna mungo L. Hepper) with particular reference to seed fill. Ann. Bot., 79(1):67-74.

[18]Kovács, B., Puskás-Preszner, A., Huzsvai, L., et al., 2015. Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings. Plant Physiol. Biochem., 96(6):38-44.

[19]Küpper, H., Zhao, F.J., McGrath, S.P., 1999. Cellular compartmentation of zinc in leaves of the hyper-accumulator Thlaspi caerulescens. Plant Physiol., 119(1):305-312.

[20]Leiva-Candia, D.E., Ruz-Ruiz, M.F., Pinzi, S., et al., 2013. Influence of nitrogen fertilization on physical and chemical properties of fatty acid methyl esters from Brassica napus oil. Fuel, 111(3):865-871.

[21]Li, Q., Li, B.H., Kronzucker, H.J., et al., 2010. Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity. Plant Cell Environ., 33(9):1529-1542.

[22]Li, T.Q., Yang, X.E., Yang, J.Y., et al., 2006. Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. Pedosphere, 16(5):616-623.

[23]Li, Y., Zhou, C., Huang, M., et al., 2016. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins. J. Plant Res., 129(2):251-262.

[24]Liu, G., La, G., Li, Z., et al., 2012. Evaluation of available micronutrient contents in tobacco planting soils in Bijie. Chinese Tobacco Sci., 33(3):23-27 (in Chinese).

[25]Liu, H., Hu, C., Sun, X., et al., 2010. Interactive effects of molybdenum and phosphorus fertilizers on photosynthetic characteristics of seedlings and grain yield of Brassica napus. Plant Soil, 326(1):345-353.

[26]Liu, N., Zhang, L., Meng, X., et al., 2014. Effect of nitrate/ammonium ratios on growth, root morphology and nutrient elements uptake of watermelon (Citrullus lanatus) seedlings. J. Plant Nutr., 37(11):1859-1872.

[27]Lu, Y.L., Xu, Y.C., Shen, Q., et al., 2009. Effects of different nitrogen forms on the growth and cytokinin content in xylem sap of tomato (Lycopersicon esculentum Mill.) seedlings. Plant Soil, 315:67-77.

[28]Mendel, R.R., 2011. Cell biology of molybdenum in plants. Plant Cell Rep., 30(10):1787-1797.

[29]Nie, Z., Hu, C., Liu, H., et al., 2014. Differential expression of molybdenum transport and assimilation genes between two winter wheat cultivars (Triticum aestivum). Plant Physiol. Bioch., 82(3):27-33.

[30]Nimptsch, J., Pflugmacher, S., 2007. Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense. Chemosphere, 66(4):708-714.

[31]Peuke, A.D., 2010. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. J. Exp. Bot., 61(3):635-655.

[32]Rathke, G.W., Behrens, T., Diepenbrock, W., 2006. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric. Ecosyst. Environ., 117(2-3):80-108.

[33]Shi, X.Z., Yu, D.S., Warner, E.D., et al., 2006. Cross-reference system for translating between genetic soil classification of China and soil taxonomy. Soil Sci. Soc. Am. J., 70(1): 78-83.

[34]Sokri, S.M., Babalar, M., Barker, A.V., et al., 2015. Fruit quality and nitrogen, potassium, and calcium content of apple as influenced by nitrate: ammonium ratios in tree nutrition. J. Plant Nutr., 38(10):1619-1627.

[35]Su, Y., Liu, J., Lu, Z., et al., 2014. Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. Environ. Exp. Bot., 97(1):40-48.

[36]Tabatabaei, S.J., Yusefi, M., Hajiloo, J., 2008. Effects of shading and NO3:NH4 ratio on the yield, quality and N metabolism in strawberry. Sci. Hortic., 116(3):264-272.

[37]Tejada-Jiménez, M., Llamas, Á., Sanz-Luque, E., et al., 2007. A high-affinity molybdate transporter in eukaryotes. Proc. Natl. Acad. Sci. USA, 104(50):20126-20130.

[38]Tejada-Jiménez, M., Galván, A., Fernández, E., 2011. Algae and humans share a molybdate transporter. Proc. Natl. Acad. Sci. USA, 108(16):6420-6425.

[39]Tetyuk, O., Benning, U.F., Hoffmann-Benning, S., 2013. Collection and analysis of Arabidopsis phloem exudates using the EDTA-facilitated method. J. Vis. Exp., (80):e51111.

[40]Ueno, D., Koyama, E., Yamaji, N., et al., 2011. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar. J. Exp. Bot., 62(7):2265-2272.

[41]Wang, Z.Y., Tang, Y.L., Zhang, F.S., 1999. Effect of molybdenum on growth and nitrate reductase activity of winter wheat seedlings as influenced by temperature and nitrogen treatments. J. Plant Nutr., 22(2):387-395.

[42]Wu, Z., Zhao, X., Sun, X., et al., 2015. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere, 119:1217-1223.

[43]Yang, M., Shi, L., Xu, F., et al., 2009. Effects of B, Mo, Zn, and their interactions on seed yield of rapeseed (Brassica napus L.). Pedosphere, 19(1):53-59.

[44]Ye, X., Guo, Y., Wang, G., et al., 2011. Investigation and analysis of soil molybdenum in the Tieguanyin tea plantations of Fujian Province. Plant Nutr. Fertiliz. Sci., 17(6):1372-1378 (in Chinese).

[45]Yin, Y., Wang, H., Liao, X., 2009. Analysis and strategy for 2009 rapeseed industry development in China. Chin. J. Oil Crop Sci., 31(2):259-262 (in Chinese).

[46]Yu, M., Hu, C., Wang, Y., 2002. Molybdenum efficiency in winter wheat cultivars as related to molybdenum uptake and distribution. Plant Soil, 245(2):287-293.

[47]Zhao, Y.F., Wu, J.F., Shang, D., et al., 2015. Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis. Food Chem., 168:48-54.

[48]Zheng, X.J., He, K., Kleist, T., et al., 2015. Anion channel SLAH3 functions in nitrate-dependent alleviation of ammonium toxicity in Arabidopsis. Plant Cell Eviron., 38(3):474-486.

[49]Zhu, W., Hu, C., Tan, Q., et al., 2015. Effects of molybdenum application on yield and quality of Chinese cabbages under different ratios of NO3-N to NH4+-N. J. Huazhong Agric. Univ., 34(4):44-50 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE