Full Text:   <2162>

Summary:  <1642>

Suppl. Mater.: 

CLC number: 

On-line Access: 2021-02-07

Received: 2020-08-07

Revision Accepted: 2022-04-22

Crosschecked: 2021-01-06

Cited: 0

Clicked: 3687

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Mee Lee Looi

https://orcid.org/0000-0001-5415-6973

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2021 Vol.22 No.2 P.112-122

http://doi.org/10.1631/jzus.B2000446


Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells


Author(s):  Aiysvariyah RAJEDADRAM, Kar Yong PIN, Sui Kiong LING, See Wan YAN, Mee Lee LOOI

Affiliation(s):  School of Biosciences, Taylor's University, Lakeside Campus, 47500 Subang Jaya, Malaysia; more

Corresponding email(s):   meelee.looi@um.edu.my

Key Words:  Piper betle, Hydroxychavicol (HC), Cell cycle, Apoptosis, c-Jun N-terminal kinase (JNK), P38 mitogen-activated protein kinase (MAPK)


Aiysvariyah RAJEDADRAM, Kar Yong PIN, Sui Kiong LING, See Wan YAN, Mee Lee LOOI. Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells[J]. Journal of Zhejiang University Science B, 2021, 22(2): 112-122.

@article{title="Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells",
author="Aiysvariyah RAJEDADRAM, Kar Yong PIN, Sui Kiong LING, See Wan YAN, Mee Lee LOOI",
journal="Journal of Zhejiang University Science B",
volume="22",
number="2",
pages="112-122",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000446"
}

%0 Journal Article
%T Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells
%A Aiysvariyah RAJEDADRAM
%A Kar Yong PIN
%A Sui Kiong LING
%A See Wan YAN
%A Mee Lee LOOI
%J Journal of Zhejiang University SCIENCE B
%V 22
%N 2
%P 112-122
%@ 1673-1581
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000446

TY - JOUR
T1 - Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells
A1 - Aiysvariyah RAJEDADRAM
A1 - Kar Yong PIN
A1 - Sui Kiong LING
A1 - See Wan YAN
A1 - Mee Lee LOOI
J0 - Journal of Zhejiang University Science B
VL - 22
IS - 2
SP - 112
EP - 122
%@ 1673-1581
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000446


Abstract: 
This study aims to elucidate the antiproliferative mechanism of hydroxychavicol (HC). Its effects on cell cycle, apoptosis, and the expression of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) in HT-29 colon cancer cells were investigated. HC was isolated from Piper betle leaf (PBL) and verified by high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). The cytotoxic effects of the standard drug 5-fluorouracil (5-FU), PBL water extract, and HC on HT-29 cells were measured after 24, 48, and 72 h of treatment. cell cycle and apoptosis modulation by 5-FU and HC treatments were investigated up to 30 h. Changes in phosphorylated JNK (pJNK) and P38 (pP38) MAPK expression were observed up to 18 h. The half maximal inhibitory concentration (IC50) values of HC (30 μg/mL) and PBL water extract (380 μg/mL) were achieved at 24 h, whereas the IC50 of 5-FU (50 μmol/L) was obtained at 72 h. cell cycle arrest at the G0/G1 phase in HC-treated cells was observed from 12 h onwards. Higher apoptotic cell death in HC-treated cells compared to 5-FU-treated cells (P<0.05) was observed. High expression of pJNK and pP38 MAPK was observed at 12 h in HC-treated cells, but not in 5-FU-treated HT-29 cells (P<0.05). It is concluded that HC induces cell cycle arrest and apoptosis of HT-29 cells, with these actions possibly mediated by JNK and P38 MAPK.

从花椒叶中提取的羟基胡椒酚可以诱导耐TP53的HT-29结肠癌细胞的细胞周期阻滞和凋亡

目的:阐明羟基胡椒酚(HC)的抗恶性细胞增生的机制。并研究HC对HT-29结肠癌细胞的细胞周期、凋亡及c-Jun氨基末端激酶(JNK)和P38丝裂原活化蛋白激酶(MAPK)表达的影响。
方法:从蒌叶(PBL)中分离出HC,经高效液相色谱(HPLC)、核磁共振(NMR)和气相色谱-质谱(GC-MS)进行检测。在处理24、48和72 h后,检测标准药物5-氟尿嘧啶(5-FU)、PBL水提物和HC对HT-29细胞的细胞毒性作用。检测30 h内5-FU和HC处理对细胞周期和凋亡的调控作用。同时检测18 h内磷酸化JNK(pJNK)和磷酸化P38(pP38)MAPK的表达变化。
结果:HC(30μg/ mL)和PBL水提物(380μg/ mL)的半数最大抑制浓度(IC50)值在24 h时达到,而5-FU(50μmol/ L)的IC50值在72 h时达到。从12h开始HC处理的细胞停滞在细胞周期的G0/G1期。与5-FU处理的细胞相比,HC处理的细胞凋亡率更高(P<0.05)。在HC处理的细胞中,pJNK和pP38 MAPK在12 h时出现高表达,而在5-FU处理的HT-29细胞中则没有(P<0.05)。
结论:由此可见,HC可诱导HT-29细胞的细胞周期阻滞和凋亡,这些作用可能由JNK和P38 MAPK介导。

关键词:蒌叶;羟基胡椒酚(HC);细胞周期;细胞凋亡;c-Jun氨基末端激酶(JNK);P38丝裂原活化蛋白激酶(MAPK)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abrahim NN, Kanthimathi MS, Abdul-Aziz A, 2012. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase. BMC Complement Altern Med, 12:220.

[2]Amin A, Gali-Muhtasib H, Ocker M, et al., 2009. Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci, 5(1):1-11.

[3]Angulo P, Kaushik G, Subramaniam D, et al., 2017. Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy. J Hematol Oncol, 10:10.

[4]Batra P, Sharma AK, 2013. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech, 3(6):439-459.

[5]Bhanot A, Sharma R, Noolvi MN, 2011. Natural sources as potential anti-cancer agents: a review. Int J Phytomed, 3(1):9-26.

[6]Bossi G, Lapi E, Strano S, et al., 2006. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene, 25(2):304-309.

[7]Boyer J, McLean EG, Aroori S, et al., 2004. Characterization of p53 wild-type and null isogenic colorectal cancer cell lines resistant to 5-fluorouracil, oxaliplatin, and irinotecan. Clin Cancer Res, 10(6):2158-2167.

[8]Brown CJ, Cheok CF, Verma CS, et al., 2011. Reactivation of p53: from peptides to small molecules. Trends Pharmacol Sci, 32(1):53-62.

[9]Chakraborty JB, Mahato SK, Joshi K, et al., 2012. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance. Cancer Sci, 103(1):88-99.

[10]Chang MC, Uang BJ, Wu HL, et al., 2002. Inducing the cell cycle arrest and apoptosis of oral KB carcinoma cells by hydroxychavicol: roles of glutathione and reactive oxygen species. Br J Pharmacol, 135(3):619-630.

[11]Chang MC, Uang BJ, Tsai CY, et al., 2007. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization. Br J Pharmacol, 152(1):73-82.

[12]Chen CL, Chi CW, Liu TY, 2000. Enhanced hydroxychavicol-induced cytotoxic effects in glutathione-depleted HepG2 cells. Cancer Lett, 155(1):29-35.

[13]Chowdhury AA, Chaudhuri J, Biswas N, et al., 2013. Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of aif and GSH-ROS-JNK-ERK-iNOS pathway. PLoS ONE, 8(9):e73672.

[14]Dhanasekaran DN, Reddy EP, 2008. JNK signaling in apoptosis. Oncogene, 27(48):6245-6251.

[15]Dhillon AS, Hagan S, Rath O, et al., 2007. MAP kinase signalling pathways in cancer. Oncogene, 26(22):3279-3290.

[16]Garodia P, Ichikawa H, Malani N, et al., 2007. From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J Soc Integr Oncol, 5(1):25-37.

[17]Garufi A, Pistritto G, Cirone M, et al., 2016. Reactivation of mutant p53 by capsaicin, the major constituent of peppers. J Exp Clin Cancer Rese, 35:136.

[18]Gokare P, Finnberg NK, Abbosh PH, et al., 2017. P53 represses pyrimidine catabolic gene dihydropyrimidine dehydrogenase (DPYD) expression in response to thymidylate synthase (TS) targeting. Sci Rep, 7:9711.

[19]Gundala SR, Aneja R, 2014. Piper betle leaf: a reservoir of potential xenohormetic nutraceuticals with cancer-fighting properties. Cancer Prev Res, 7(5):477-486.

[20]Gundala SR, Yang CH, Mukkavilli R, et al., 2014. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol Appl Pharmacol, 280(1):86-96.

[21]Hanahan D, Weinberg RA, 2011. Hallmarks of cancer: the next generation. Cell, 144(5):646-674.

[22]Jeng JH, Ho YS, Chan CP, et al., 2000. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes. Carcinogenesis, 21(7):1365-1370.

[23]Jeng JH, Chang MC, Hahn LJ, 2001. Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol, 37(6):477-492.

[24]Jeng JH, Chen SY, Liao CH, et al., 2002. Modulation of platelet aggregation by areca nut and betel leaf ingredients: roles of reactive oxygen species and cyclooxygenase. Free Radic Biol Med, 32(9):860-871.

[25]Jeng JH, Wang YJ, Chang WH, et al., 2004. Reactive oxygen species are crucial for hydroxychavicol toxicity toward KB epithelial cells. Cell Mol Life Sci, 61(1):83-96.

[26]Kitagishi Y, Kobayashi M, Matsuda S, 2012. Protection against cancer with medicinal herbs via activation of tumor suppressor. J Oncol, 2012:236530.

[27]Kumar N, Misra P, Dube A, et al., 2010. Piper betle Linn. a maligned Pan-Asiatic plant with an array of pharmacological activities and prospects for drug discovery. Curr Sci, 99(7):922-932.

[28]Longley DB, Harkin DP, Johnston PG, 2003. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer, 3(5):330-338.

[29]Majumdar AG, Subramanian M, 2019. Hydroxychavicol from Piper betle induces apoptosis, cell cycle arrest, and inhibits epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Pharmacol, 166:274-291.

[30]Martins CP, Brown-Swigart L, Evan GI, 2006. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell, 127(7):1323-1334.

[31]Ng PL, Rajab NF, Then SM, et al., 2014. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(8):692-700.

[32]Ozaki T, Nakagawara A, 2011. Role of p53 in cell death and human cancers. Cancers, 3(1):994-1013.

[33]Paranjpe R, Gundala SR, Lakshminarayana N, et al., 2013. Piper betel leaf extract: anticancer benefits and bio-guided fractionation to identify active principles for prostate cancer management. Carcinogenesis, 34(7):1558-1566.

[34]Rahman AA, Jamal ARA, Harun R, et al., 2014. Gamma-tocotrienol and hydroxy-chavicol synergistically inhibits growth and induces apoptosis of human glioma cells. BMC Complement Altern Med, 14:213.

[35]Sarkar FH, Li YW, Wang ZW, et al., 2009. Cellular signaling perturbation by natural products. Cell Signal, 21(11):1541-1547.

[36]Slattery ML, Lundgreen A, Wolff RK, 2012. MAP kinase genes and colon and rectal cancer. Carcinogenesis, 33(12): 2398-2408.

[37]Sui XB, Kong N, Wang X, et al., 2014. JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci Rep, 4:4694.

[38]Sung B, Prasad S, Yadav VR, et al., 2012. Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr Cancer, 64(2):173-197.

[39]Takayama T, Miyanishi K, Hayashi T, et al., 2006. Colorectal cancer: genetics of development and metastasis. J Gastroenterol, 41(3):185-192.

[40]Thornton TM, Rincon M, 2009. Non-classical p38 MAP kinase functions: cell cycle checkpoints and survival. Int J Biol Sci, 5(1):44-51.

[41]Trivedy CR, Craig G, Warnakulasuriya S, 2002. The oral health consequences of chewing areca nut. Addict Biol, 7(1):115-125.

[42]Wagner EF, Nebreda ÁR, 2009. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer, 9(8):537-549.

[43]Widowati W, Wijaya L, Wargasetia TL, et al., 2013. Antioxidant, anticancer, and apoptosis-inducing effects of Piper extracts in HeLa cells. J Exp Integr Med, 3(3):225-230.

[44]Wigmore PM, Mustafa S, El-Beltagy M, et al., 2010. Effects of 5-FU. In: Raffa RB, Tallarida RJ (Eds.), Chemo Fog: Cancer Chemotherapy-Related Cognitive Impairment. Springer, New York, p.157-164.

[45]Wiman KG, 2010. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene, 29(30): 4245-4252.

[46]Zawacka-Pankau J, Selivanova G, 2015. Pharmacological reactivation of p53 as a strategy to treat cancer. J Intern Med, 277(2):248-259.

[47]Zhang N, Yin Y, Xu SJ, et al., 2008. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules, 13(8):1551-1569.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE