CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-09-16
Cited: 0
Clicked: 1047
Tianjiao PENG, Jun YAO. Development and application of bionic systems consisting of tumor-cell membranes[J]. Journal of Zhejiang University Science B, 2022, 23(9): 770-777.
@article{title="Development and application of bionic systems consisting of tumor-cell membranes",
author="Tianjiao PENG, Jun YAO",
journal="Journal of Zhejiang University Science B",
volume="23",
number="9",
pages="770-777",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2200156"
}
%0 Journal Article
%T Development and application of bionic systems consisting of tumor-cell membranes
%A Tianjiao PENG
%A Jun YAO
%J Journal of Zhejiang University SCIENCE B
%V 23
%N 9
%P 770-777
%@ 1673-1581
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200156
TY - JOUR
T1 - Development and application of bionic systems consisting of tumor-cell membranes
A1 - Tianjiao PENG
A1 - Jun YAO
J0 - Journal of Zhejiang University Science B
VL - 23
IS - 9
SP - 770
EP - 777
%@ 1673-1581
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200156
Abstract: Malignant tumors pose a serious threat to human health but during the past decade, great progress has been made in the treatment of tumors. The tumor-cell membrane is well constructed and can be used to solve problems in tumor therapy. Tumor-cell membranes exhibit not only high biocompatibility due to their homology but also enhanced therapeutic effects when combined with nanotechnology. Meanwhile, nanomaterials show high selectivity, sensitivity, and clinical transformation potential. Enhanced immunotherapy or tumor vaccines have potential clinical application because of tumor-membrane surface-specific antigens. Several studies have confirmed the feasibility and advantages of using tumor-cell membrane-incorporated nanosystems for tumor therapy. Considering all this, we focus in this review on the application of tumor-cell-membrane bionic platforms and, in the summary, provide ideas for new scientific developments.
[1]BarenholzY, 2012. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release, 160(2):117-134.
[2]BlassE, OttPA, 2021. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol, 18(4):215-229.
[3]BurchPA, CroghanGA, GastineauDA, et al., 2004. Immunotherapy (APC8015, Provenge®) targeting prostatic acid phosphatase can induce durable remission of metastatic androgen-independent prostate cancer: a phase 2 trial. Prostate, 60(3):197-204.
[4]CaoSY, PetersonSM, MüllerS, et al., 2021. A membrane protein display platform for receptor interactome discov
[5]ery. Proc Natl Acad Sci USA, 118(39):e2025451118.
[6]ChenL, QinH, ZhaoRF, et al., 2021. Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Sci Transl Med, 13(601):eabc2816.
[7]ChenM, ChenM, HeJT, 2019. Cancer cell membrane cloaking nanoparticles for targeted co-delivery of doxorubicin and PD-L1 siRNA. Artif Cells Nanomed Biotechnol, 47(1):1635-1641.
[8]ChenZ, ZhaoPF, LuoZY, et al., 2016. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano, 10(11):10049-10057.
[9]FangRH, HuCMJ, LukBT, et al., 2014. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett, 14(4):2181-2188.
[10]GarberK, 2022. The PROTAC gold rush. Nat Biotechnol, 40(1):12-16.
[11]GongC, YuX, YouB, et al., 2020. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J Nanobiotechnology, 18:92.
[12]HanahanD, 2022. Hallmarks of cancer: new dimensions. Cancer Discov, 12(1):31-46.
[13]HuCMJ, ZhangL, AryalS, et al., 2011. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA, 108(27):10980-10985.
[14]HuQY, SunWJ, QianCE, et al., 2015. Anticancer platelet-mimicking nanovehicles. Adv Mater, 27(44):7043-7050.
[15]JiangQ, LiuY, GuoRR, et al., 2019. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials, 192:292-308.
[16]JiangY, KrishnanN, ZhouJR, et al., 2020. Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity. Adv Mater, 32(30):2001808.
[17]KantoffPW, HiganoCS, ShoreND, et al., 2010. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 363(5):411-422.
[18]KeskinDB, AnandappaAJ, SunJ, et al., 2019. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 565(7738):234-239.
[19]LiAX, ZhaoYN, LiYX, et al., 2021. Cell-derived biomimetic nanocarriers for targeted cancer therapy: cell membranes and extracellular vesicles. Drug Deliv, 28(1):1237-1255.
[20]LiBW, WangF, GuiLJ, et al., 2018. The potential of biomimetic nanoparticles for tumor-targeted drug delivery. Nanomedicine (Lond), 13(16):2099-2118.
[21]LiRX, HeYW, ZhangSY, et al., 2018. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B, 8(1):14-22.
[22]LinYY, ChenCY, MaDL, et al., 2022. Cell-derived artificial nanovesicle as a drug delivery system for malignant mela
[23]noma treatment. Biomed Pharmacother, 147:112586.
[24]LiuCH, WangDD, ZhangSY, et al., 2019. Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano, 13(4):4267-4277.
[25]LiuHJ, WangJF, WangMM, et al., 2021. Biomimetic nanomedicine coupled with neoadjuvant chemotherapy to suppress breast cancer metastasis via tumor microenvironment remodeling. Adv Funct Mater, 31(25):2100262.
[26]LiuZW, WangFM, LiuXP, et al., 2021. Cell membrane-camouflaged liposomes for tumor cell-selective glycans engineering and imaging in vivo. Proc Natl Acad Sci USA, 118(30):e2022769118.
[27]MengXZ, WangJJ, ZhouJD, et al., 2021. Tumor cell membrane-based peptide delivery system targeting the tumor microenvironment for cancer immunotherapy and diagnosis. Acta Biomater, 127:266-275.
[28]ParodiA, QuattrocchiN, van de VenAL, et al., 2013. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol, 8(1):61-68.
[29]PeiWY, WanX, ShahzadKA, et al., 2018. Direct modulation of myelin-autoreactive CD4+ and CD8+ T cells in EAE mice by a tolerogenic nanoparticle co-carrying myelin peptide-loaded major histocompatibility complexes, CD47 and multiple regulatory molecules. Int J Nanomed, 13:3731-3750.
[30]TanSW, WuTT, ZhangD, et al., 2015. Cell or cell membrane-based drug delivery systems. Theranostics, 5(8):863-881.
[31]WangHJ, LiuY, HeRQ, et al., 2020. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater Sci, 8(2):552-568.
[32]WangJ, ZhuMT, NieGJ, 2021. Biomembrane-based nanostructures for cancer targeting and therapy: from synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev, 178:113974.
[33]WuLL, LiQ, DengJJ, et al., 2021. Platelet-tumor cell hybrid membrane-camouflaged nanoparticles for enhancing therapy efficacy in glioma. Int J Nanomed, 16:8433-8446.
[34]ZhaoQC, BarclayM, HilkensJ, et al., 2010. Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Cancer, 9:154.
[35]ZhuJY, ZhengDW, ZhangMK, et al., 2016. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett, 16(9):5895-5901.
[36]ZhuangJ, HolayM, ParkJH, et al., 2019. Nanoparticle delivery of immunostimulatory agents for cancer immunotherapy. Theranostics, 9(25):7826-7848.
[37]ZitvogelL, RegnaultA, LozierA, et al., 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med, 4(5):594-600.
[38]ZouMZ, LiZH, BaiXF, et al., 2021. Hybrid vesicles based on autologous tumor cell membrane and bacterial outer membrane to enhance innate immune response and personalized tumor immunotherapy. Nano Lett, 21(20):8609-8618.
Open peer comments: Debate/Discuss/Question/Opinion
<1>