Full Text:   <766>

Summary:  <346>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-04-10

Received: 2022-09-20

Revision Accepted: 2023-01-17

Crosschecked: 2023-04-14

Cited: 0

Clicked: 1073

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Luqiao WANG

https://orcid.org/0000-0003-0263-9492

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2023 Vol.24 No.4 P.281-300

http://doi.org/10.1631/jzus.B2200459


Promising roles of non-exosomal and exosomal non-coding RNAs in the regulatory mechanism and as diagnostic biomarkers in myocardial infarction


Author(s):  Jingru LI, Haocheng MA, Xinyu WU, Guihu SUN, Ping YANG, Yunzhu PENG, Qixian WANG, Luqiao WANG

Affiliation(s):  Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China

Corresponding email(s):   wlq8360@163.com

Key Words:  Exosome, Non-exosomal non-coding RNA (ncRNA), Exosomal ncRNA, Long non-coding RNA (lncRNA), MicroRNA (miRNA), Circular RNA (circRNA), Myocardial Infarction (MI)


Share this article to: More |Next Article >>>

Jingru LI, Haocheng MA, Xinyu WU, Guihu SUN, Ping YANG, Yunzhu PENG, Qixian WANG, Luqiao WANG. Promising roles of non-exosomal and exosomal non-coding RNAs in the regulatory mechanism and as diagnostic biomarkers in myocardial infarction[J]. Journal of Zhejiang University Science B, 2023, 24(4): 281-300.

@article{title="Promising roles of non-exosomal and exosomal non-coding RNAs in the regulatory mechanism and as diagnostic biomarkers in myocardial infarction",
author="Jingru LI, Haocheng MA, Xinyu WU, Guihu SUN, Ping YANG, Yunzhu PENG, Qixian WANG, Luqiao WANG",
journal="Journal of Zhejiang University Science B",
volume="24",
number="4",
pages="281-300",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2200459"
}

%0 Journal Article
%T Promising roles of non-exosomal and exosomal non-coding RNAs in the regulatory mechanism and as diagnostic biomarkers in myocardial infarction
%A Jingru LI
%A Haocheng MA
%A Xinyu WU
%A Guihu SUN
%A Ping YANG
%A Yunzhu PENG
%A Qixian WANG
%A Luqiao WANG
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 4
%P 281-300
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200459

TY - JOUR
T1 - Promising roles of non-exosomal and exosomal non-coding RNAs in the regulatory mechanism and as diagnostic biomarkers in myocardial infarction
A1 - Jingru LI
A1 - Haocheng MA
A1 - Xinyu WU
A1 - Guihu SUN
A1 - Ping YANG
A1 - Yunzhu PENG
A1 - Qixian WANG
A1 - Luqiao WANG
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 4
SP - 281
EP - 300
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200459


Abstract: 
Non-exosomal non-coding RNAs (non-exo-ncRNAs) and exosomal ncRNAs (exo-ncRNAs) have been associated with the pathological development of myocardial Infarction (MI). Accordingly, this analytical review provides an overview of current MI studies on the role of plasma non-exo/exo-ncRNAs. We summarize the features and crucial roles of ncRNAs and reveal their novel biological correlations via bioinformatics analysis. The following contributions are made: (1) we comprehensively describe the expression profile, competing endogenous RNA (ceRNA) network, and “pre-necrotic” biomarkers of non-exo/exo-ncRNAs for MI; (2) functional enrichment analysis indicates that the target genes of ncRNAs are enriched in the regulation of apoptotic signaling pathway and cellular response to chemical stress, etc.; (3) we propose an updated and comprehensive view on the mechanisms, pathophysiology, and biomarker roles of non-exo/exo-ncRNAs in MI, thereby providing a theoretical basis for the clinical management of MI.

非外泌体/外泌体非编码RNAs在参与心肌梗死调节及作为诊断性生物标志物方面的作用

李静茹,马浩诚,吴新宇,孙贵虎,杨萍,彭云珠,王启贤,王路乔
昆明医科大学第一附属医院心内科,中国昆明市,650032
摘要:非外泌体/外泌体非编码RNAs与心肌梗死(MI)的病理发展相关。本文对目前血浆中非外泌体/外泌体非编码RNAs在MI中的作用进行了概述,总结了上述非编码RNAs的特点和关键作用,并通过生物信息学分析揭示其新的生物学关联性,内容包括:(1)全面描述了MI中非外泌体/外泌体非编码RNAs的表达、内源竞争RNA网络和"坏死前"的生物标志物;(2)分析证实非编码RNAs的靶基因在调控细胞凋亡信号通路和细胞对化学应激反应等过程中富集;(3)对非外泌体/外泌体非编码RNAs在MI中的调节机制、病理生理学功能和作为生物标志物方面的作用提出了新的视角,为其临床治疗提供理论依据。

关键词:外泌体;非外泌体非编码RNA(ncRNA);外泌体ncRNA;长链非编码RNA(lncRNA);微小RNA(miRNA);环状RNA(circRNA);心肌梗死

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AufieroS, ReckmanYJ, PintoYM, et al., 2019. Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol, 16(8):503-514.

[2]BabuinL, JaffeAS, 2005. Troponin: the biomarker of choice for the detection of cardiac injury. CMAJ, 173(10):‍1191-1202.

[3]BartelDP, 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297.

[4]BartelDP, 2009. MicroRNAs: target recognition and regulatory functions. Cell, 136(2):215-233.

[5]BhaskaranM, MohanM, 2014. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol, 51(4):759-774.

[6]CaoC, WangB, TangJN, et al., 2021. Circulating exosomes repair endothelial cell damage by delivering miR-193a-5p. J Cell Mol Med, 25(4):2176-2189.

[7]ChenJG, XuXM, JiH, et al., 2019. Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats. Iran J Basic Med Sci, 22(9):1050-1058.

[8]ChenMH, GuoYN, SunZL, et al., 2021. Long non-coding RNA SENCR alleviates hypoxia/reoxygenation-induced cardiomyocyte apoptosis and inflammatory response by sponging miR-1. Cardiovasc Diagn Ther, 11(3):707-715.

[9]ChenNF, ZhaoG, YanX, et al., 2018. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol, 19:218.

[10]ChenSY, FangHC, LiuRZ, et al., 2021. miR-6718-5p and miR-4329 can be used as potential biomarkers for acute myocardial infarction. J Card Surg, 36(10):3721-3728.

[11]ChenXZ, HuangFR, LiuYH, et al., 2022. Exosomal miR-152-5p and miR-3681-5p function as potential biomarkers for ST-segment elevation myocardial infarction. Clinics, 77:100038.

[12]ChenZZ, YanYY, WuJD, et al., 2020. Expression level and diagnostic value of exosomal NEAT1/miR-204/MMP-9 in acute ST-segment elevation myocardial infarction. IUBMB Life, 72(11):2499-2507.

[13]ChoudhryH, MoleDR, 2016. Hypoxic regulation of the noncoding genome and NEAT1. Brief Funct Genomics, 15(3):174-185.

[14]CorstenMF, DennertR, JochemsS, et al., 2010. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet, 3(6):499-506.

[15]CrouserED, JulianMW, BicerS, et al., 2021. Circulating exosomal microRNA expression patterns distinguish cardiac sarcoidosis from myocardial ischemia. PLoS ONE, 16(1):e0246083.

[16]D'AlessandraY, PompilioG, CapogrossiMC, 2012. MicroRNAs and myocardial infarction. Curr Opin Cardiol, 27(3):228-235.

[17]D'SouzaRF, WoodheadJST, ZengNN, et al., 2018. Circulatory exosomal miRNA following intense exercise is unrelated to muscle and plasma miRNA abundances. Am J Physiol Endocrinol Metab, 315(4):E723-E733.

[18]DongFF, DongSH, LiangY, et al., 2019. miR-34a promotes myocardial infarction in rats by inhibiting the activity of SIRT1. Eur Rev Med Pharmacol Sci, 23(16):7059-7065.

[19]EmanueliC, ShearnAIU, LaftahA, et al., 2016. Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac microRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS ONE, 11(4):e0154274.

[20]FanSY, HuKL, ZhangDY, et al., 2020. Interference of circRNA HIPK3 alleviates cardiac dysfunction in lipopolysaccharide-induced mice models and apoptosis in H9C2 cardiomyocytes. Ann Transl Med, 8(18):1147.

[21]FengY, WangQS, ShiC, et al., 2019. Does circular RNA exert significant effects in ovarian cancer? Crit Rev Eukaryot Gene Expr, 29(2):161-170.

[22]FuLY, ChenQQ, YaoT, et al., 2017. Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma. Oncotarget, 8(27):43878-43888.

[23]GarikipatiVNS, VermaSK, ChengZJ, et al., 2019. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun, 10:4317.

[24]GengHH, LiR, SuYM, et al., 2016. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS ONE, 11(3):e0151753.

[25]GengT, SongZY, XingJX, et al., 2020. Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway. Int J Nanomedicine, 15:2647-2658.

[26]GidlöfO, AnderssonP, van der PalsJ, et al., 2011. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology, 118(4):217-226.

[27]GongXH, ZhuY, ChangHX, et al., 2019. Long noncoding RNA MALAT1 promotes cardiomyocyte apoptosis after myocardial infarction via targeting miR-144-3p. Biosci Rep, 39(8):BSR20191103.

[28]GuoHL, IngoliaNT, WeissmanJS, et al., 2010. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308):835-840.

[29]GuoJ, LiuHB, SunC, et al., 2019. MicroRNA-155 promotes myocardial infarction-induced apoptosis by targeting RNA-binding protein QKI. Oxid Med Cell Longev, 2019:4579806.

[30]GuoM, LiR, YangLF, et al., 2021. Evaluation of exosomal miRNAs as potential diagnostic biomarkers for acute myocardial infarction using next-generation sequencing. Ann Transl Med, 9(3):219.

[31]GuoY, LuoF, LiuQ, et al., 2017. Regulatory non-coding RNAs in acute myocardial infarction. J Cell Mol Med, 21(5):1013-1023.

[32]GuptaRA, ShahN, WangKC, et al., 2010. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291):1071-1076.

[33]HaMJ, KimVN, 2014. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 15(8):509-524.

[34]HansenTB, JensenTI, ClausenBH, et al., 2013. Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441):384-388.

[35]HawezA, Al-HaidariA, MadhiR, et al., 2019. MiR-155 regulates PAD4-dependent formation of neutrophil extracellular traps. Front Immunol, 10:2462.

[36]HombachS, KretzM, 2016. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol, 937:3-17.

[37]HuH, WuJW, LiD, et al., 2018. Knockdown of lncRNA MALAT1 attenuates acute myocardial infarction through miR-320-Pten axis. Biomed Pharmacother, 106:738-746.

[38]HuH, WuJW, YuXF, et al., 2019. Long non-coding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating TSC2-mTOR signaling. Biol Res, 52:58.

[39]HuangK, HuSQ, ChengK, 2019. A new era of cardiac cell therapy: opportunities and challenges. Adv Healthc Mater, 8(2):1801011.

[40]JiML, JiangH, WuF, et al., 2021. Precise targeting of miR-141/200c cluster in chondrocytes attenuates osteoarthritis development. Ann Rheum Dis, 80(3):356-366.

[41]JiP, DiederichsS, WangWB, et al., 2003. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22(39):8031-8041.

[42]KabekkoduSP, ShuklaV, VargheseVK, et al., 2018. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc, 93(4):1955-1986.

[43]NNSBNMKamal, ShahidanWNS, 2020. Non-exosomal and exosomal circulatory microRNAs: which are more valid as biomarkers? Front Pharmacol, 10:1500.

[44]KhanM, NickoloffE, AbramovaT, et al., 2015. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res, 117(1):52-64.

[45]KowaraM, Borodzicz-JazdzykS, RybakK, et al., 2021. Therapies targeted at non-coding RNAs in prevention and limitation of myocardial infarction and subsequent cardiac remodeling-current experience and perspectives. Int J Mol Sci, 22(11):5718.

[46]KoyanagiS, 2003. The pathogenesis of myocardial infarction and risk factors. Nihon Rinsho, 61(Suppl 5):333-338.

[47]KristensenLS, AndersenMS, StagstedLVW, et al., 2019. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet, 20(11):675-691.

[48]LangMJ, OuDK, LiuZH, et al., 2021. LncRNA MHRT promotes cardiac fibrosis via miR-3185 pathway following myocardial infarction. Int Heart J, 62(4):891-899.

[49]LegniniI, di TimoteoG, RossiF, et al., 2017. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell, 66(1):22-37.e29.

[50]LiH, ChengZJ, TangYY, et al., 2019. Expression profile of long non‑coding RNAs in cardiomyocytes exposed to acute ischemic hypoxia. Mol Med Rep, 19(1):302-308.

[51]LiJ, WangN, WenX, et al., 2022. Serum miRNA-203 as a novel biomarker for the early prediction of acute ST-elevation myocardial infarction. J Cardiovasc Transl Res, 15(6):1406-1413.

[52]LiQL, GaoYP, ZhuJ, et al., 2020. MiR-101 attenuates myocardial infarction-induced injury by targeting DDIT4 to regulate autophagy. Curr Neurovasc Res, 17(2):123-130.

[53]LiSL, RenJ, SunQM, 2018. The expression of microRNA-23a regulates acute myocardial infarction in patients and in vitro through targeting PTEN. Mol Med Rep, 17(5):6866-6872.

[54]LiXZ, SunYL, HuangSL, et al., 2019. Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway. eBioMedicine, 39:69-82.

[55]LiZY, HuangC, BaoC, et al., 2017. Correction: corrigendum: exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 24(2):194.

[56]LiangZZ, GuoC, ZouMM, et al., 2020. CircRNA-miRNA-mRNA regulatory network in human lung cancer: an update. Cancer Cell Int, 20:173.

[57]LinF, ChenHW, ZhaoGA, et al., 2020. Advances in research on the circRNA-miRNA-mRNA network in coronary heart disease treated with traditional Chinese medicine. Evid Based Complement Alternat Med, 2020:8048691.

[58]LingH, GuoZY, ShiYF, et al., 2020a. Serum exosomal microRNA-21, microRNA-126, and PTEN are novel biomarkers for diagnosis of acute coronary syndrome. Front Physiol, 11:654.

[59]LingH, GuoZY, DuSS, et al., 2020b. Serum exosomal miR-122-5p is a new biomarker for both acute coronary syndrome and underlying coronary artery stenosis. Biomarkers, 25(7):539-547.

[60]LiuC, YaoMD, LiCP, et al., 2017. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics, 7(11):2863-2877.

[61]LiuJ, WuJD, LiLB, et al., 2020. The role of exosomal non-coding RNAs in coronary artery disease. Front Pharmacol, 11:603104.

[62]LiuZY, LiuJ, WeiY, et al., 2020. LncRNA MALAT1 prevents the protective effects of miR-125b-5p against acute myocardial infarction through positive regulation of NLRC5. Exp Ther Med, 19(2):990-998.

[63]LuQJ, WuRF, ZhaoM, et al., 2019. miRNAs as therapeutic targets in inflammatory disease. Trends Pharmacol Sci, 40(11):853-865.

[64]MaRF, GaoL, LiuYH, et al., 2021. LncRNA TTTY15 knockdown alleviates H2O2-stimulated myocardial cell injury by regulating the miR-98-5p/CRP pathway. Mol Cell Biochem, 476(1):81-92.

[65]MaoQ, LiangXL, ZhangCL, et al., 2019. LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res Ther, 10:393.

[66]MarquesAC, TanJ, LeeS, et al., 2012. Evidence for conserved post-transcriptional roles of unitary pseudogenes and for frequent bifunctionality of mRNAs. Genome Biol, 13(11):R102.

[67]MiXL, GaoYP, HaoDJ, et al., 2022. Prognostic value of circulating microRNA-21-5p and microRNA-126 in patients with acute myocardial infarction and infarct-related artery total occlusion. Front Cardiovasc Med, 9:947721.

[68]NavarroP, PageDR, AvnerP, et al., 2006. Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev, 20(20):2787-2792.

[69]Otero-OrtegaL, Alonso-LopezE, Pérez-MatoM, et al., 2021. Similarities and differences in extracellular vesicle profiles between ischaemic stroke and myocardial infarction. Biomedicines, 9(1):8.

[70]PegtelDM, GouldSJ, 2019. Exosomes. Annu Rev Biochem, 88:487-514.

[71]QiaoL, HuSQ, LiuSY, et al., 2019. MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Invest, 129(6):‍2237-2250.

[72]QuinnJJ, ChangHY, 2016. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet, 17(1):‍47-62.

[73]RothGA, MensahGA, JohnsonCO, et al., 2020. Global burden of cardiovascular diseases and risk factors, 1990‍‒‍2019: update from the GBD 2019 Study. J Am Coll Cardiol, 76(25):2982-3021.

[74]Salgado-SomozaA, ZhangL, VausortM, et al., 2017. The circular RNA MICRA for risk stratification after myocardial infarction. IJC Heart Vasc, 17:33-36.

[75]SalmenaL, PolisenoL, TayY, et al., 2011. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell, 146(3):353-358.

[76]SaludasL, OliveiraCC, RoncalC, et al., 2021. Extracellular vesicle-based therapeutics for heart repair. Nanomaterials, 11(3):570.

[77]ScărlătescuAI, BarbălatăT, SimaAV, et al., 2022. miR-146a-5p, miR-223-3p and miR-142-3p as potential predictors of major adverse cardiac events in young patients with acute ST elevation myocardial infarction-added value over left ventricular myocardial work indices. Diagnostics, 12(8):1946.

[78]ShannonP, MarkielA, OzierO, et al., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13(11):2498-2504.

[79]SiXY, ZhengH, WeiGQ, et al., 2020. CircRNA hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to notch1 and miR-133a. Mol Ther Nucleic Acids, 21:636-655.

[80]SpannbauerA, Mester-TonczarJ, TraxlerD, et al., 2020. Large animal models of cell-free cardiac regeneration. Biomolecules, 10(10):1392.

[81]SuJ, LiJY, YuQL, et al., 2020. Exosomal miRNAs as potential biomarkers for acute myocardial infarction. IUBMB Life, 72(3):384-400.

[82]SuQ, LvXW, 2020. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics, 112(2):1680-1685.

[83]SuQ, LiuY, LvXW, et al., 2019. Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy. J Mol Cell Cardiol, 133:12-25.

[84]SuQ, LiuY, LvXW, et al., 2020. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am J Physiol Heart Circ Physiol, 318(2):H332-H344.

[85]SunLY, ZhaoJC, GeXM, et al., 2020. Circ_LAS1L regulates cardiac fibroblast activation, growth, and migration through miR-125b/SFRP5 pathway. Cell Biochem Funct, 38(4):443-450.

[86]SunY, HuZQ, 2020. LncRNA HOTAIR aggravates myocardial ischemia-reperfusion injury by sponging microRNA-126 to upregulate SRSF1. Eur Rev Med Pharmacol Sci, 24(17):9046-9054.

[87]SunZQ, ChenC, SuYF, et al., 2019. Regulatory mechanisms and clinical perspectives of circRNA in digestive system neoplasms. J Cancer, 10(13):2885-2891.

[88]TanJ, PanWN, ChenHL, et al., 2021. Circ_0124644 serves as a ceRNA for miR-590-3p to promote hypoxia-induced cardiomyocytes injury via regulating SOX4. Front Genet, 12:667724.

[89]TanSJO, FlorianoJF, NicastroL, et al., 2020. Novel applications of mesenchymal stem cell-derived exosomes for myocardial infarction therapeutics. Biomolecules, 10(5):707.

[90]VausortM, WagnerDR, DevauxY, 2014. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res, 115(7):668-677.

[91]WangB, CaoC, HanDJ, et al., 2021. Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair. Biomed Pharmacother, 142:112056.

[92]WangCX, ZhangCC, LiuLX, et al., 2017. Macrophage-derived miR-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther, 25(1):192-204.

[93]WangGK, ZhuJQ, ZhangJT, et al., 2010. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J, 31(6):‍659-666.

[94]WangJ, ZhangSW, LiXH, et al., 2020. LncRNA SNHG7 promotes cardiac remodeling by upregulating ROCK1 via sponging miR-34-5p. Aging, 12(11):10441-10456.

[95]WangJY, LiuXF, WuHC, et al., 2010. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res, 38(16):5366-5383.

[96]WangSJ, LiL, DengWJ, et al., 2021. CircRNA MFACR is upregulated in myocardial infarction and downregulates miR-125b to promote cardiomyocyte apoptosis induced by hypoxia. J Cardiovasc Pharmacol, 78(6):802-808.

[97]WangSQ, WangY, ChengHX, et al., 2022. The networks of noncoding RNAs and their direct molecular targets in myocardial infarction. Int J Biol Sci, 18(8):3194-3208.

[98]WangZ, WangZ, WangTZ, et al., 2019. Inhibition of miR-34a-5p protected myocardial ischemia reperfusion injury-induced apoptosis and reactive oxygen species accumulation through regulation of Notch Receptor 1 signaling. Rev Cardiovasc Med, 20(3):187-197.

[99]WangZH, SunXY, LiCL, et al., 2017. MiRNA-21 expression in the serum of elderly patients with acute myocardial infarction. Med Sci Monit, 23:5728-5734.

[100]WernlyB, PaarV, AignerA, et al., 2020. Anti-CD3 antibody treatment reduces scar formation in a rat model of myocardial infarction. Cells, 9(2):295.

[101]WuDH, WangCZ, 2020. miR-155 regulates the proliferation of glioma cells through PI3K/AKT signaling. Front Neurol, 11:297.

[102]XiJ, LiQQ, LiBQ, et al., 2020. miR-155 inhibition represents a potential valuable regulator in mitigating myocardial hypoxia/reoxygenation injury through targeting BAG5 and MAPK/JNK signaling. Mol Med Rep, 21(3):1011-1020.

[103]XiaoSH, WangY, CaoXC, et al., 2021. Long non-coding RNA LUCAT1 inhibits myocardial oxidative stress and apoptosis after myocardial infarction via targeting microRNA-181a-5p. Bioengineered, 12(1):4546-4555.

[104]XiaoYW, 2020. Construction of a circRNA-miRNA-mRNA network to explore the pathogenesis and treatment of pancreatic ductal adenocarcinoma. J Cell Biochem, 121(1):394-406.

[105]XieLH, ZhangQQ, MaoJ, et al., 2021. The roles of lncRNA in myocardial infarction: molecular mechanisms, diagnosis biomarkers, and therapeutic perspectives. Front Cell Dev Biol, 9:680713.

[106]XuLWJ, TianL, YanZR, et al., 2023. Diagnostic and prognostic value of miR-486-5p, miR-451a, miR-21-5p and monocyte to high-density lipoprotein cholesterol ratio in patients with acute myocardial infarction. Heart Vessels, 38(3):318-331.

[107]YinYG, LvL, WangWN, 2019. Expression of miRNA-214 in the sera of elderly patients with acute myocardial infarction and its effect on cardiomyocyte apoptosis. Exp Ther Med, 17(6):4657-4662.

[108]YuX, XuJF, SongM, et al., 2022. Associations of circulating microRNA-221 and 222 with the severity of coronary artery lesions in acute coronary syndrome patients. Angiology, 73(6):579-587.

[109]ZhangJ, LiS, LiL, et al., 2015. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics, 13(1):17-24.

[110]ZhangJ, TangYR, ZhangJ, et al., 2021. CircRNA ACAP2 is overexpressed in myocardial infarction and promotes the maturation of miR-532 to induce the apoptosis of cardiomyocyte. J Cardiovasc Pharmacol, 78(2):247-252.

[111]ZhangL, WangYM, 2019. Expression and function of lncRNA ANRIL in a mouse model of acute myocardial infarction combined with type 2 diabetes mellitus. J Chin Med Assoc, 82(9):685-692.

[112]ZhangML, ZhaoK, XuXP, et al., 2018. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun, 9:4475.

[113]ZhangPJ, WuWY, ChenQ, et al., 2019. Non-coding RNAs and their integrated networks. J Integr Bioinform, 16(3):20190027.

[114]ZhangSL, WangNB, MaQY, et al., 2021. LncRNA TUG1 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-133b in myocardial fibrosis after myocardial infarction. Cell Biol Int, 45(12):2534-2543.

[115]ZhangY, ZhangXO, ChenT, et al., 2013. Circular intronic long noncoding RNAs. Mol Cell, 51(6):792-806.

[116]ZhangY, JiaoL, SunLH, et al., 2018. LncRNA ZFAS1 as a SERCA2a inhibitor to cause intracellular Ca2+ overload and contractile dysfunction in a mouse model of myocardial infarction. Circ Res, 122(10):1354-1368.

[117]ZhaoJX, LiXL, HuJX, et al., 2019. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res, 115(7):1205-1216.

[118]ZhaoXX, JiaYP, ChenHZ, et al., 2019. Plasma-derived exosomal miR-183 associates with protein kinase activity and may serve as a novel predictive biomarker of myocardial ischemic injury. Exp Ther Med, 18(1):179-187.

[119]ZhengDD, HuoM, LiB, et al., 2021. The role of exosomes and exosomal microRNA in cardiovascular disease. Front Cell Dev Biol, 8:616161.

[120]ZhengLF, LiXM, ChouJJ, et al., 2018. Stard13 3'-untranslated region functions as a ceRNA for TP53INP1 in prohibiting migration and invasion of breast cancer cells by regulating miR-125b activity. Eur J Cell Biol, 97(1):23-31.

[121]ZhengML, LiuXY, HanRJ, et al., 2020. Circulating exosomal long non-coding RNAs in patients with acute myocardial infarction. J Cell Mol Med, 24(16):9388-9396.

[122]ZhouYY, ZhouB, PacheL, et al., 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun, 10:1523.

[123]ZhuF, LiHR, LiuYJ, et al., 2020. miR-155 antagomir protect against DSS-induced colitis in mice through regulating Th17/Treg cell balance by Jarid2/Wnt/β‍-catenin. Biomed Pharmacother, 126:109909.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE