Full Text:   <1067>

CLC number: R544.1

On-line Access: 2013-07-30

Received: 2013-06-18

Revision Accepted: 2013-07-17

Crosschecked: 2013-06-18

Cited: 5

Clicked: 2107

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2013 Vol.14 No.8 P.721-728

10.1631/jzus.BQICC707


Influence of serum adiponectin level and SNP +45 polymorphism of adiponectin gene on myocardial fibrosis


Author(s):  Cheng-jun Yan, Su-mei Li, Qiang Xiao, Yan Liu, Jian Hou, Ai-fang Chen, Li-ping Xia, Xiu-chang Li

Affiliation(s):  Department of Emergency, Jining First People’s Hospital, Jining 272000, China; more

Corresponding email(s):   dr_lixiuchang@hotmail.com

Key Words:  Hypertension, Myocardial fibrosis, Adiponectin gene, Type-I procollagen carboxyl end peptide (PICP), Type-III procollagen ammonia cardinal extremity peptide (PIIINP)


Cheng-jun Yan, Su-mei Li, Qiang Xiao, Yan Liu, Jian Hou, Ai-fang Chen, Li-ping Xia, Xiu-chang Li. Influence of serum adiponectin level and SNP +45 polymorphism of adiponectin gene on myocardial fibrosis[J]. Journal of Zhejiang University Science B, 2013, 14(8): 721-728.

@article{title="Influence of serum adiponectin level and SNP +45 polymorphism of adiponectin gene on myocardial fibrosis",
author="Cheng-jun Yan, Su-mei Li, Qiang Xiao, Yan Liu, Jian Hou, Ai-fang Chen, Li-ping Xia, Xiu-chang Li",
journal="Journal of Zhejiang University Science B",
volume="14",
number="8",
pages="721-728",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.BQICC707"
}

%0 Journal Article
%T Influence of serum adiponectin level and SNP +45 polymorphism of adiponectin gene on myocardial fibrosis
%A Cheng-jun Yan
%A Su-mei Li
%A Qiang Xiao
%A Yan Liu
%A Jian Hou
%A Ai-fang Chen
%A Li-ping Xia
%A Xiu-chang Li
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 8
%P 721-728
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.BQICC707

TY - JOUR
T1 - Influence of serum adiponectin level and SNP +45 polymorphism of adiponectin gene on myocardial fibrosis
A1 - Cheng-jun Yan
A1 - Su-mei Li
A1 - Qiang Xiao
A1 - Yan Liu
A1 - Jian Hou
A1 - Ai-fang Chen
A1 - Li-ping Xia
A1 - Xiu-chang Li
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 8
SP - 721
EP - 728
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.BQICC707


Abstract: 
Adiponectin plays an important role in the development of hypertension, atherosclerosis, and cardiomyocyte hypertrophy, but very little was known about the influence of serum adiponectin or the adiponectin gene polymorphism on myocardial fibrosis. Our study investigates the influence of the SNP +45 polymorphism of the adiponectin gene and serum levels of adiponectin on myocardial fibrosis in patients with essential hypertension. A case-control study was conducted on 165 hypertensive patients and 126 normotensive healthy controls. The genotypes of adiponectin gene polymorphisms were detected by the polymerase chain reaction (PCR) method. Serum concentrations of procollagen were measured by a double antibody sandwich enzyme-linked immunosorbent assay (ELISA) in all subjects. The integrated backscatter score (IBS) was measured in the left ventricular myocardium using echocardiography. The serum levels of adiponectin in hypertensive patients were significantly lower than those in the normal control group ((2.69±1.0) μg/ml vs. (4.21±2.89) μg/ml, respectively, P<0.001). The serum levels of type-I procollagen carboxyl end peptide (PICP) and type-III procollagen ammonia cardinal extremity peptide (PIIINP) in the hypertension group were significantly higher than those in the control group. In the hypertension group, serum levels of adiponectin were significantly and negatively related to the average acoustic intensity and corrected acoustic intensity of the myocardium (r=0.46 and 0.61, respectively, P<0.05 for both). The serum levels of PICP and PIIINP were significantly different among the three genotypes of SNP +45 (P<0.01). Logistic regression analyses showed that sex and genotype (GG+GT) were the major risk factors of myocardial fibrosis in hypertensive patients (OR=5.343 and 3.278, respectively, P<0.05). These data suggest that lower levels of adiponectin and SNP +45 polymorphism of the adiponectin gene are likely to play an important role in myocardial fibrosis in hypertensive patients.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cartegni, L., Chew, S.L., Krainer, A.R., 2002. Listening to silent and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet., 3(4):285-298.

[2]Castoldi, G., di Gioia, C.R., Bombardi, C., Catalucci, D., Corradi, B., Gualazzi, M.G., Leopizzi, M., Mancini, M., Zerbini, G., Condorelli, G., et al., 2012. miR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J. Cell. Physiol., 227(2):850-856.

[3]Devi, S., Kennedy, R.H., Joseph, L., Shekhawat, N.S., Melchert, R.B., Joseph, J., 2006. Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovasc. Pathol., 15(2):75-82.

[4]Díez, J., 2008. Diagnosis and treatment of myocardial fibrosis in hypertensive heart disease. Circ. J., 72(Suppl. A):A8-A12.

[5]Fujita, K., Maeda, N., Sonoda, M., Ohashi, K., Hibuse, T., Nishizawa, H., Nishida, M., Hiuge, A., Kurata, A., Kihara, S., et al., 2008. Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-α. Arterioscler. Thromb. Vasc. Biol., 28(5):863-870.

[6]Guo, X., Saad, M.F., Langefeld, C.D., Williams, A.H., Cui, J., Taylor, K.D., Norris, J.M., Jinagouda, S., Darwin, C.H., Mitchell, B.D., et al., 2006. Genome-wide linkage of plasma adiponectin reveals a major locus on chromosome 3q distinct from the adiponectin structural gene: the IRAS family study. Diabetes, 55(6):1723-1730.

[7]Hara, K., Boutin, P., Mori, Y., Tobe, K., Dina, C., Yasuda, K., Yamauchi, T., Otabe, S., Okada, T., Eto, K., et al., 2002. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes, 51(2):536-540.

[8]Ikonomidis, I., Kadoglou, N., Tsiotra, P.C., Kollias, A., Palios, I., Fountoulaki, K., Halvatsiotis, I., Maratou, E., Dimitriadis, G., Kremastinos, D.T., et al., 2012. Arterial stiffness is associated with increased monocyte expression of adiponectin receptor mRNA and protein in patients with coronary artery disease. Am. J. Hypertens., 25(7):746-755.

[9]Jellis, C., Wright, J., Kennedy, D., Sacre, J., Jenkins, C., Haluska, B., Martin, J., Fenwick, J., Marwick, T.H., 2011. Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy. Circ. Cardiovasc. Imaging, 4(6):693-702.

[10]Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., Tobe, K., 2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest., 116(7):1784-1792.

[11]Kai, H., Kudo, H., Takayama, N., Yasuoka, S., Kajimoto, H., Imaizumi, T., 2009. Large blood pressure variability and hypertensive cardiac remodeling—role of cardiac inflammation. Circ. J., 73(12):2198-2203.

[12]Kaya, Z., Leib, C., Werfel, S., Göser, S., Öttl, R., Leuchs, B., Pfitzer, G., Katus, H.A., Müller, O.J., 2011. Comparison of IL-10 and MCP-1-7ND gene transfer with AAV9 vectors for protection from murine autoimmune myocarditis. Cardiovasc. Res., 91(1):116-123.

[13]Khabour, O.F., Wehaibi, S.H., Al-Azzam, S.I., Alzoubi, K.H., El-Akawi, Z.J., 2013. Association of adiponectin with hypertension in type 2 diabetic patients: the gender effect. Clin. Exp. Hypertens., 35(5):361-366.

[14]Kjeldsen, S.E., Erdine, S., Farsang, C., Sleight, P., Mancia, G., 2002. 1999 WHO/ISH Hypertension Guidelines Subcommittee. 1999 WHO/ISH Hypertension Guidelines— highlights & ESH update. J. Hypertens., 20(1):153-155.

[15]Kosmala, W., Przewlocka-Kosmala, M., Wojnalowicz, A., Mysiak, A., Marwick, T.H., 2012. Integrated backscatter as a fibrosis marker in the metabolic syndrome: association with biochemical evidence of fibrosis and left ventricular dysfunction. Eur. Heart J. Cardiovasc. Imaging, 13(6):459-467.

[16]Kuo, S.M., Halpern, M.M., 2011. Lack of association between body mass index and plasma adiponectin levels in healthy adults. Int. J. Obes. (Lond.), 35(12):1487-1494.

[17]Liao, Y., Takashima, S., Maeda, N., Ouchi, N., Komamura, K., Shimomura, I., Hori, M., Matsuzawa, Y., Funahashi, T., Kitakaze, M., 2005. Exacerbation of heart failure in adiponectin deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovas. Res., 67(4):705-713.

[18]Lin, Y.H., Shiau, Y.C., Yen, R.F., Lin, L.C., Wu, C.C., Ho, Y.L., Huang, P.J., 2004. The relation between myocardial cyclic variation of integrated backscatter and serum concentrations of procollagen propeptides in hypertensive patients. Ultrasound Med. Biol., 30(7):885-891.

[19]Matsuzawa, Y., 2006. Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med., 3(1):35-42.

[20]Melistas, L., Mantzoros, C.S., Kontogianni, M., Antonopoulou, S., Ordovas, J.M., Yiannakouris, N., 2009. Association of the +45T>G and +276G>T polymorphisms in the adiponectin gene with insulin resistance in nondiabetic Greek women. Eur. J. Endocrinol., 161(6):845-852.

[21]Mohammadzadeh, G., Zarghami, N., 2009. Associations between single-nucleotide polymorphisms of the adiponectin gene, serum adiponectin levels and increased risk of type 2 diabetes mellitus in Iranian obese individuals. Scand. J. Clin. Lab. Invest., 69(7):764-771.

[22]Namvaran, F., Rahimi-Moghaddam, P., Azarpira, N., Dabbaghmanesh, M.H., 2012. Polymorphism of adiponectin (45T/G) and adiponectin receptor-2 (795G/A) in an Iranian population: relation with insulin resistance and response to treatment with pioglitazone in patients with type 2 diabetes mellitus. Mol. Biol. Rep., 39(5):5511-5518.

[23]Pischon, T., Hu, F.B., Girman, C.J., Rifai, N., Manson, J.E., Rexrode, K.M., Rimm, E.B., 2011. Plasma total and high molecular weight adiponectin levels and risk of coronary heart disease in women. Atherosclerosis, 219(1):322-329.

[24]Robinson, K., Prins, J., Venkatesh, B., 2011. Clinical review: adiponectin biology and its role in inflammation and critical illness. Crit. Care., 15(2):221.

[25]Sabouri, S., Ghayour-Mobarhan, M., Moohebati, M., Hassani, M., Kassaeian, J., Tatari, F., Mahmoodi-kordi, F., Esmaeili, H.A., Tavallaie, S., Paydar, R., et al., 2011. Association between 45T/G polymorphism of adiponectin gene and coronary artery disease in an Iranian population. Sci. World J., 11:93-101.

[26]Tsai, W.C., Lin, C.C., Chen, J.Y., Huang, Y.Y., Lee, C.H., Li, W.T., Weng, C.M., Chen, J.H., 2008. Association of adiponectin with procollagen type I carboxyterminal propeptide in non-diabetic essential hypertension. Blood Press., 17(4):233-238.

[27]Vasseur, F., Helbecque, N., Dina, C., Lobbens, S., Delannoy, V., Gaget, S., Boutin, P., Vaxillaire, M., Leprêtre, F., Dupont, S., et al., 2002. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum. Mol. Genet., 11(21):2607-2614.

[28]Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., et al., 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med., 7(8):941-946.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE