CLC number: TN402
On-line Access: 2011-04-11
Received: 2010-04-15
Revision Accepted: 2010-10-21
Crosschecked: 2011-01-31
Cited: 1
Clicked: 7485
Yu-hua Cheng, Nian-xiong Tan. Third harmonic distortion calculation of a self-oscillating power amplifier[J]. Journal of Zhejiang University Science C, 2011, 12(4): 307-316.
@article{title="Third harmonic distortion calculation of a self-oscillating power amplifier",
author="Yu-hua Cheng, Nian-xiong Tan",
journal="Journal of Zhejiang University Science C",
volume="12",
number="4",
pages="307-316",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1000097"
}
%0 Journal Article
%T Third harmonic distortion calculation of a self-oscillating power amplifier
%A Yu-hua Cheng
%A Nian-xiong Tan
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 4
%P 307-316
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1000097
TY - JOUR
T1 - Third harmonic distortion calculation of a self-oscillating power amplifier
A1 - Yu-hua Cheng
A1 - Nian-xiong Tan
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 4
SP - 307
EP - 316
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1000097
Abstract: It is difficult to analyze the harmonic distortion of a self-oscillating power amplifier (SOPA), because the SOPA is a hard nonlinear system without an external clock. The single or multiple sinusoidal inputs describing function (DF) method is commonly used to linearize a nonlinear element, but this method considers only the components at the same frequencies as the input signals (i.e., fundamental components) at the nonlinear element’s output. In this paper, besides the fundamental components, the third harmonic components are also calculated at the output of a comparator with three sinusoidal inputs, to create a linearized model of the comparator, and thus of the SOPA. The third harmonic distortion of the SOPA is calculated. The models of the zeroth and the first order SOPA are verified by behavioral simulation using MATLAB.
[1]Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (9th Ed.). Dover Publication, New York, p.255-294, 358-436.
[2]Bailey, W.N., 1936. Some infinite integrals involving Bessel functions. Proc. Lond. Math. Soc., 40(1):37-48.
[3]Buyle, J., de Gezelle, V., Bakeroot, B., Doutreloigne, J., 2008. A High-Voltage Switching ADSL Line-Driver, with an n-Type Output Stage. Proc. 12th WSEAS Int. Conf. on Circuits, p.60-64.
[4]Daniels, J., Dehaene, W., Steyaert, M., Wiesbauer, A., 2008. A 350-MHz Combined TDC-DTC with 61 ps Resolution for Asynchronous ΔΣ ADC Applications. IEEE Asian Solid-State Circuits Conf., p.365-368.
[5]Daniels, J., Dehaene, W., Steyaert, M., Wiesbauer, A., 2010. A/D conversion using asynchronous delta-sigma modulation and time-to-digital conversion. IEEE Trans. Circ. Syst. I: Reg. Papers, 57(9):2404-2412.
[6]de Gezelle, V., Doutreloigne, J., van Calster, A., 2005. A 765 mW high-voltage switching ADSL line driver. Sol.-State Electron., 49(12):1947-1950.
[7]de Gezelle, V., Buyle, J., Doutreloigne, J., 2008. Distortion Calculation of an Asynchronous Switching xDSL Line-Driver. IEEE Int. Symp. on Circuits and Systems, p.2386-2389.
[8]Ekstrom, J.L., 1960. On infinite integrals containing products of Bessel functions. SIAM Rev., 2(1):23-26.
[9]Gelb, A., Velde, W.V., 1968. Multiple-Input Describing Functions and Nonlinear System Design. McGraw-Hill, New York, p.250-263.
[10]Ouzounov, S., Roza, E., Hegt, J.A., van der Weide, G., van Roermund, A.H.M., 2006. Analysis and design of high-performance asynchronous sigma-delta modulators with a binary quantizer. IEEE J. Sol.-State Circ., 41(3):588-596.
[11]Piessens, T., Steyaert, M., 2001. SOPA: a High Efficiency Line Driver in 0.35μm CMOS Using a Self Oscillating Power Amplifier. ISSCC Digest of Technical Papers, p.306-307.
[12]Piessens, T., Steyaert, M., 2003. Highly efficient xDSL line drivers in 0.35-μm CMOS using a self-oscillating power amplifier. IEEE J. Sol.-State Circ., 38(1):22-29.
[13]Piessens, T., Steyaert, M., 2005. Behavioral analysis of self-oscillating class D line drivers. IEEE Trans. Circ. Syst. I: Reg. Papers, 52(4):706-714.
[14]Putzeys, B., 2005. Simple Self-oscillating Class D Amplifier with Full Output Filter Control. 118th AES Convention, No. 6453.
[15]Roza, E., 1997. Analog-to-digital conversion via duty-cycle modulation. IEEE Trans. Circ. Syst. II: Anal. Dig. Signal Process., 44(11):907-914.
[16]Serneels, B., Steyaert, M., Dehaene, W., 2007. A 237mW aDSL2+ CO Line Driver in Standard 1.2 V 0.13μm CMOS. ISSCC Digest of Technical Papers, p.524-619.
[17]van der Hulst, P., Veltman, A., Groenenberg, R., 2002. An Asynchronous Switching High-End Power Amplifier. 112th AES Convention, No. 5503.
Open peer comments: Debate/Discuss/Question/Opinion
<1>