Full Text:   <2482>

Summary:  <553>

CLC number: TP273

On-line Access: 2014-04-10

Received: 2013-08-15

Revision Accepted: 2013-12-18

Crosschecked: 2014-03-17

Cited: 2

Clicked: 2769

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.4 P.293-299


A frequency domain design of PID controller for an AVR system

Author(s):  Md Nishat Anwar, Somnath Pan

Affiliation(s):  Department of Electrical Engineering, Indian School of Mines, Dhanbad 826004, India

Corresponding email(s):   nishatnith@gmail.com, somnath_pan@hotmail.com

Key Words:  Automatic voltage regulation (AVR), PID controller, Frequency response matching

Md Nishat Anwar, Somnath Pan. A frequency domain design of PID controller for an AVR system[J]. Journal of Zhejiang University Science C, 2014, 15(4): 293-299.

@article{title="A frequency domain design of PID controller for an AVR system",
author="Md Nishat Anwar, Somnath Pan",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A frequency domain design of PID controller for an AVR system
%A Md Nishat Anwar
%A Somnath Pan
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 4
%P 293-299
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300218

T1 - A frequency domain design of PID controller for an AVR system
A1 - Md Nishat Anwar
A1 - Somnath Pan
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 4
SP - 293
EP - 299
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300218

We propose a new proportional-integral-derivative (PID) controller design method for an automatic voltage regulation (AVR) system based on approximate model matching in the frequency domain. The parameters of the PID controller are obtained by approximate frequency response matching between the closed-loop control system and a reference model with the desired specifications. Two low frequency points are required for matching the frequency response, and the design method yields linear algebraic equations, solution of which gives the controller parameters. The effectiveness of the proposed method is demonstrated through examples taken from the literature and comparison with some popular methods.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Aguila-Camacho, N., Duarte-Mermoud, M.A., 2013. Fractional adaptive control for an automatic voltage regulator. ISA Trans., 52(6):807-815.

[2]Ang, K.H., Chong, G., Li, Y., 2005. PID control system analysis, design and technology. IEEE Trans. Contr. Syst. Technol., 13(4):559-576.

[3]Astrom, K.J., Hagglund, T., 1995. PID Controllers Theory Design and Tuning (2nd Ed.). Instrument Society of America, Research Triangle Park, North Caorlina.

[4]Chen, D., Seborg, D.E., 2002. PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res., 41(19):4807-4822.

[5]Gaing, Z.L., 2004. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Conv., 19(2):384-391.

[6]Ho, W.K., Hang, C.C., Cao, L.S., 1995. Tuning of PID controllers based on gain and phase margin specification. Automatica, 31(3):497-502.

[7]Kim, D.H., 2011. Hybrid GA–BF based intelligent PID controller tuning for AVR system. Appl. Soft Comput., 11(1):11-22.

[8]Kundur, P., 1994. Power System Stability and Control. McGraw Hill, New York.

[9]Mukherjee, V., Ghoshal, S.P., 2007. Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electr. Power Syst. Res., 77(12):1689-1698.

[10]O’Dwyer, A., 2006. Handbook of PI and PID Controller Tuning Rules (2nd Ed.). Imperial College Press, London.

[11]Pan, I., Das, S., 2013. Frequency domain design of fractional order PID controller for AVR system using chaotic multi-objective optimization. Int. J. Electr. Power Energy Syst., 51:106-118.

[12]Pan, S., Pal, J., 1995. Reduced order modelling of discrete-time systems. Appl. Math. Model., 19(3):133-138.

[13]Panagopoulos, H., Astrom, K.J., Hagglund, T., 2002. Design of PID controllers based on constrained optimisation. IEE Proc.-Contr. Theory Appl., 149(1):32-40.

[14]Rivera, D.E., Morari, M., Skogestad, S., 1986. Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev., 25(1):252-265.

[15]Shen, J.C., 2002. New tuning method for PID controller. ISA Trans., 41(4):473-484.

[16]Tan, W., 2010. Unified tuning of PID load frequency controller for power system via IMC. IEEE Trans. Power Syst., 25(1):341-350.

[17]Wang, L., Barnes, T.J.D., Cluett, W.R., 1995. New frequency domain design method for PID controllers. IEE Proc.-Contr. Theory Appl., 142(4):265-271.

[18]Zamani, M., Karimi-Ghartemani, M., Parniani, M., 2009. Design of a fractional order PID controller for an AVR using particle swarm optimization. Contr. Eng. Pract., 17(12):1380-1387.

[19]Zhu, H., Li, L., Zhao, Y., et al., 2009. CAS algorithm-based optimum design of PID controller in AVR system. Chaos Sol. Fract., 42(2):792-800.

[20]Ziegler, J.G., Nichols, N.B., 1942. Optimum settings for automatic controllers. Trans. ASME, 64:759-768.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE