Full Text:   <1365>

Summary:  <467>

CLC number: TN912; TP391.4

On-line Access: 2014-07-10

Received: 2013-11-02

Revision Accepted: 2014-04-20

Crosschecked: 2014-06-19

Cited: 6

Clicked: 7005

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.7 P.551-563

http://doi.org/10.1631/jzus.C1300320


Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal


Author(s):  Xian Zang, Felipe P. Vista Iv, Kil To Chong

Affiliation(s):  Department of Electronic Engineering, Jeonbuk National University, Jeonju-si 561-756, Korea; more

Corresponding email(s):   zangxian@jbnu.ac.kr, boduke@jbnu.ac.kr, kitchong@jbnu.ac.kr

Key Words:  Fuzzy c-means clustering, Kernel method, Global optimization, Consonant/vowel segmentationAn erratum to this article can be found at doi:10.1631/jzus.C13e0320


Xian Zang, Felipe P. Vista Iv, Kil To Chong. Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal[J]. Journal of Zhejiang University Science C, 2014, 15(7): 551-563.

@article{title="Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal",
author="Xian Zang, Felipe P. Vista Iv, Kil To Chong",
journal="Journal of Zhejiang University Science C",
volume="15",
number="7",
pages="551-563",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300320"
}

%0 Journal Article
%T Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal
%A Xian Zang
%A Felipe P. Vista Iv
%A Kil To Chong
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 7
%P 551-563
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300320

TY - JOUR
T1 - Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal
A1 - Xian Zang
A1 - Felipe P. Vista Iv
A1 - Kil To Chong
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 7
SP - 551
EP - 563
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300320


Abstract: 
We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F (FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F (KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means (FCM): sensitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the computational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.

语音信号辅音/元音分割的快速全局模糊c均值聚类算法

创新方法:传统的模糊c均值方法(FCM)有两个缺点:对初始值要求严格,无法处理非线性分割数据。通过使用基于核的模糊c均值聚类法(KFCM-F)作为本地搜索方法,采用渐进方法获得近乎最优的结果,这种方法的渐进性和KFCM-F的非线性,可以避免FCM的两个缺点。
研究手段:使用KFCM-F处理数据,在不显著影响实验结果的情况下,设计了一个加速计划以降低计算复杂度。采用非线性人工数据组和现实数据组作为语音信号,进行辅音/元音分割,以检测这种新算法的性能。
重要结论:KFCM-F方法巧妙地避免了传统FCM方法的两个缺点。我们设计的算法(FGKFCM-F)继承了KFCM-F和全局模糊c均值方法(GFCM)的优点,得以实现基于非线性分割数据组的近乎最优解。此外,我们设计的加速计划大大降低了整个计算的复杂度。实验结果证实,FGKFCM-F比其他方法更适合处理人工和现实数据。
模糊c均值聚类法;核方法;全局优化;辅音/元音分割

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bagirov, A.M., 2008. Modified global k-means algorithm for minimum sum-of-squares clustering problems. Pattern Recogn., 41(10):3192-3199.

[2]Balasko, B., Abonyi, J., Feil, B., 2005. Fuzzy Clustering and Data Analysis Toolbox. Department of Process Engineering, University of Veszprem, Veszprem.

[3]Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

[4]Bozkir, A.S., Sezer, E.A., 2013. FUAT—a fuzzy clustering analysis tool. Expert Syst. Appl., 40(3):842-849.

[5]Chiang, J.H., Hao, P.Y., 2003. A new kernel-based fuzzy clustering approach: support vector clustering with cell growing. IEEE Trans. Fuzzy Syst., 11(4):518-527.

[6]Cover, T.M., 1965. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electr. Comput., EC-14(3):326-334.

[7]Duda, R.O., Hart, P.E., 1973. Pattern Classification and Scene Analysis. Wiley, New York.

[8]Dunn, J.C., 1973. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern., 3(3):32-57.

[9]Filippone, M., Camastra, F., Masulli, F., et al., 2008. A survey of kernel and spectral methods for clustering. Pattern Recogn., 41(1):176-190.

[10]Girolami, M., 2002. Mercer kernel-based clustering in feature space. IEEE Trans. Neur. Netw., 13(3):780-784.

[11]Gong, M., Su, L., Jia, M., et al., 2014. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst., 22(1):98-109.

[12]Hu, Y., Wu, D., Nucci, A., 2013. Fuzzy-clustering-based decision tree approach for large population speaker identification. IEEE Trans. Audio Speech Lang. Process., 21(4):762-774.

[13]Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data clustering: a review. ACM Comput. Surv., 31(3):264-323.

[14]Jamaati, M., Marvi, H., 2008. Performance assessment of joint feature derived from Mellin-cepstrum for vowel recognition. Int. Rev. Electr. Eng. IREE, 3(6):1077-1086.

[15]Kim, D.W., Lee, K.Y., Lee, D., et al., 2005. Evaluation of the performance of clustering algorithms in kernel-induced feature space. Pattern Recogn., 38(4):607-611.

[16]Li, Z., Tang, S., Xue, J., et al., 2001. Modified FCM clustering based on kernel mapping. Multispectral Image Processing and Pattern Recognition, International Society for Optics and Photonics, p.241-245.

[17]Likas, A., Vlassis, N., Verbeek, J.J., 2003. The global k-means clustering algorithm. Pattern Recogn., 36(2):451-461.

[18]Liu, C., Zhang, X., Li, X., et al., 2012. Gaussian kernelized fuzzy c-means with spatial information algorithm for image segmentation. J. Comput., 7(6):1511-1518.

[19]Mercer, J., 1909. Functions of positive and negative type, and their connection with the theory of integral equations. Phil. Trans. R. Soc. Lond. Ser. A, 209(441-458):415-446.

[20]Muller, K., Mika, S., Ratsch, G., et al., 2001. An introduction to kernel-based learning algorithms. IEEE Trans. Neur. Netw., 12(2):181-201.

[21]Nguyen, T.M., Wu, Q.M.J., 2013. Dynamic fuzzy clustering and its application in motion segmentation. IEEE Trans. Fuzzy Syst., 21(6):1019-1031.

[22]Picone, J.W., 1993. Signal modeling techniques in speech recognition. Proc. IEEE, 81(9):1215-1247.

[23]Shen, H.B., Yang, J., Wang, S.T., et al., 2006. Attribute weighted Mercer kernel based fuzzy clustering algorithm for general non-spherical datasets. Soft Comput., 10(11):1061-1073.

[24]Tsai, D.M., Lin, C.C., 2011. Fuzzy c-means based clustering for linearly and nonlinearly separable data. Pattern Recogn., 44(8):1750-1760.

[25]Wang, W., Zhang, Y., Li, Y., et al., 2006. The global fuzzy c-means clustering algorithm. 6th World Congress on Intelligent Control and Automation, p.3604-3607.

[26]Wu, Z., Xie, W., Yu, J., 2003. Fuzzy c-means clustering algorithm based on kernel method. Proc. 5th Int. Conf. on Computational Intelligence and Multimedia Applications, p.49-54.

[27]Xu, R., Wunsch, D., 2005. Survey of clustering algorithms. IEEE Trans. Neur. Netw., 16(3):645-678.

[28]Yang, M.S., Tsai, H.S., 2008. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett., 29(12):1713-1725.

[29]Yu, C.Y., Li, Y., Liu, A.L., et al., 2011. A novel modified kernel fuzzy c-means clustering algorithm on image segementation. IEEE 14th Int. Conf. on Computational Science and Engineering, p.621-626.

[30]Zadeh, L.A., 1965. Fuzzy sets. Inf. Contr., 8(3):338-353.

[31]Zhang, D.Q., Chen, S.C., 2002. Fuzzy clustering using kernel method. Int. Conf. on Control and Automation, p.162-163.

[32]Zhang, D.Q., Chen, S.C., 2003a. Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neur. Process. Lett., 18(3):155-162.

[33]Zhang, D.Q., Chen, S.C., 2003b. Kernel-based fuzzy and possibilistic c-means clustering. Proc. Int. Conf. on Artificial Neural Network, p.122-125.

[34]Zhang, D.Q., Chen, S.C., 2004. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med., 32(1):37-50.

[35]Zhao, F., 2013. Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation. Neurocomputing, 106:115-125.

[36]Zhou, S., Gan, J.Q., 2004. Mercer kernel, fuzzy c-means algorithm, and prototypes of clusters. LNCS, 3177:613-618.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE