CLC number: O236
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-01-18
Cited: 0
Clicked: 7293
Citations: Bibtex RefMan EndNote GB/T7714
Xiaoxiao HU, Dong CHENG, Kit Ian KOU. Sampling formulas for 2D quaternionic signals associated with various quaternion Fourier and linear canonical transforms[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2000499 @article{title="Sampling formulas for 2D quaternionic signals associated with various quaternion Fourier and linear canonical transforms", %0 Journal Article TY - JOUR
基于四元数傅里叶变换和线性正则变换的二维四元数信号采样定理1温州医科大学第一临床医学院(信息与工程学院),中国温州市,325000 2北京师范大学珠海分校数学与数学教育研究中心,中国珠海市,519087 3澳门大学科技学院数学系,中国澳门 摘要:本文主要研究在不同形式四元数傅里叶变换和线性正则变换下有限带宽四元数函数的采样定理。证明了有限带宽四元数函数可通过它们的直接采样或经过微分和希尔伯特变换后的采样重构。此外,讨论了不同形式变换下不同类型采样公式之间的关系。首先,如果四元数函数有限带宽区域是关于原点对称的矩形区域,则不同形式四元数傅里叶变换下四元数采样公式具有相同形式;否则,采样公式是不同的。其次,利用双边四元数傅里叶变换和线性正则变换的关系,得到不同形式四元数线性正则变换下有限带宽四元数函数采样定理。再次,分析了采样公式的截断误差。最后,通过仿真展示采样公式的应用。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alon G, Paran E, 2021. A quaternionic Nullstellensatz. J Pure Appl Algebr, 225(4):106572. ![]() [2]Bahia B, Sacchi MD, 2020. Widely linear denoising of multicomponent seismic data. Geophys Prospect, 68(2):431-445. ![]() [3]Bulow T, Sommer G, 2001. Hypercomplex signals—a novel extension of the analytic signal to the multidimensional case. IEEE Trans Signal Process, 49(11):2844-2852. ![]() [4]Chen LP, Kou KI, Liu MS, 2015. Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform. J Math Anal Appl, 423(1):681-700. ![]() [5]Cheng D, Kou KI, 2018. Generalized sampling expansions associated with quaternion Fourier transform. Math Methods Appl Sci, 41(11):4021-4032. ![]() [6]Cheng D, Kou KI, 2019. FFT multichannel interpolation and application to image super-resolution. Signal Process, 162:21-34. ![]() [7]Cheng D, Kou KI, 2020. Multichannel interpolation of nonuniform samples with application to image recovery. J Comput Appl Math, 367:112502. ![]() [8]Ell TA, Le Bihan N, Sangwine SJ, 2014. Quaternion Fourier Transforms for Signal and Image Processing. John Wiley & Sons, Hoboken, USA. ![]() [9]Hahn SL, Snopek KM, 2005. Wigner distributions and ambiguity functions of 2-D quaternionic and monogenic signals. IEEE Trans Signal Process, 53(8):3111-3128. ![]() [10]Hitzer E, 2017. General two-sided quaternion Fourier transform, convolution and Mustard convolution. Adv Appl Clifford Algebr, 27(1):381-385. ![]() [11]Hitzer EMS, 2007. Quaternion Fourier transform on quaternion fields and generalizations. Adv Appl Clifford Algebr, 17(3):497-517. ![]() [12]Hu XX, Kou KI, 2017. Quaternion Fourier and linear canonical inversion theorems. Math Methods Appl Sci, 40(7):2421-2440. ![]() [13]Hu XX, Kou KI, 2018. Phase-based edge detection algorithms. Math Methods Appl Sci, 41(11):4148-4169. ![]() [14]Jagerman D, 1966. Bounds for truncation error of the sampling expansion. SIAM J Appl Math, 14(4):714-723. ![]() [15]Jiang MD, Li Y, Liu W, 2016. Properties of a general quaternion-valued gradient operator and its applications to signal processing. Front Inform Technol Electron Eng, 17(2):83-95. ![]() [16]Kou KI, Morais J, 2014. Asymptotic behaviour of the quaternion linear canonical transform and the Bochner-Minlos theorem. Appl Math Comput, 247:675-688. ![]() [17]Kou KI, Qian T, 2005a. Shannon sampling in the Clifford analysis setting. Z Anal Anwend, 24(4):853-870. ![]() [18]Kou KI, Qian T, 2005b. Shannon sampling and estimation of band-limited functions in the several complex variables setting. Acta Math Sci, 25(4):741-754. ![]() [19]Kou KI, Ou JY, Morais J, 2013. Uncertainty principle for quaternionic linear canonical transform. Abstr Appl Anal, Article 725952. ![]() [20]Kou KI, Liu MS, Morais JP, et al., 2017. Envelope detection using generalized analytic signal in 2D QLCT domains. Multidim Syst Signal Process, 28(4):1343-1366. ![]() [21]Lian P, 2021. Quaternion and fractional Fourier transform in higher dimension. Appl Math Comput, 389:125585. ![]() [22]Marvasti F, 2001. Nonuniform Sampling: Theory and Practice. Springer Science & Business Media, New York, USA. ![]() [23]Pan WJ, 2000. Fourier Analysis and Its Applications. Peking University Press, China (in Chinease). ![]() [24]Pei SC, Ding JJ, Chang JH, 2001. Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT. IEEE Trans Signal Process, 49(11):2783-2797. ![]() [25]Splettstösser W, Stens RL, Wilmes G, 1981. On approximation by the interpolating series of G. Valiron. Funct Approx Comment Math, 11:39-56. ![]() [26]Yao K, Thomas JB, 1966. On truncation error bounds for sampling representations of band-limited signals. IEEE Trans Aerosp Electron Syst, AES-2(6):640-647. ![]() [27]Zayed AI, 1993. Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton, USA. ![]() [28]Zou CM, Kou KI, Wang YL, 2016. Quaternion collaborative and sparse representation with application to color face recognition. IEEE Trans Image Process, 25(7):3287-3302. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>