Full Text:  <850>

Summary:  <564>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-10-19

Cited: 0

Clicked: 1050

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Rui SU

https://orcid.org/0009-0005-3411-537X

Qian SU

https://orcid.org/0009-0007-8260-0016

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Experimental investigation of the thermal insulation performance of Ce/Si/Ti oxide heat-reflective coating


Author(s):  Rui SU, Yue LV, Qian SU, Yanfei PEI

Affiliation(s):  School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Corresponding email(s):  suqian@126.com

Key Words:  Track slab; Solar radiation; Thermochromic coating; Cooling performance


Share this article to: More <<< Previous Paper|Next Paper >>>


Abstract: 
To solve the problem of deformation and cracking of ballastless track slab under temperature load, a composite oxide and a series of heat-reflective coating samples were prepared. At the microscopic level, the elemental composition and optical properties of the materials prepared were analyzed by Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy, and the feasibility of Ce/Si/Ti oxide as functional fillers for heat-reflective coatings of track slabs was demonstrated. At the macro level, by designing and assembling an indoor sunlight simulation test device, the surface and internal temperatures of the coated and uncoated concrete specimens were analyzed and studied, and the macroscopic cooling effect of the coatings was evaluated. Also, to study the engineering application effect of the track slab thermal insulation reflective coating, COMSOL was used to build a 3D calculation model of the heat transfer deformation of the ballastless track slab structure. The research results showed that: Ce/Si/Ti oxide has strong reflectivity and can reflect 95% of infrared light; it has good ultraviolet (UV) shielding ability and can absorb more than 65% of the UV light. The TiO2 coating can reduce the temperature of the concrete surface by 6‍–11°Cand that of the inside of the concrete by 10‍–‍14°C; the cooling effect decreases evenly with the increase of air temperature. The Ce/Si/Ti oxide coating can reduce the surface temperature of the concrete by 16 °C and that of the inside of the concrete by 15 °C. In addition, the cooling effect is basically not affected by the air temperature, and it changes non-linearly with the increase of the Ce/Si/Ti oxide content. Numerical calculation shows that the heat reflective coating can reduce the surface temperature and internal temperature difference of the track slab by 11.54–21.31 °C, and the vertical displacement of the track slab can be reduced by about 35%‍–‍70%. Considering the cooling effect, the adhesion strength, and the engineering application effect of the coating, the optimal doping amount of Ce/Si/Ti oxide is 40%, and that coating is the most suitable for use as a ballastless track heat reflective coating.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE