Full Text:   <300>

CLC number: 

On-line Access: 2024-01-26

Received: 2023-02-02

Revision Accepted: 2023-09-14

Crosschecked: 2023-12-15

Cited: 0

Clicked: 443

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2024 Vol.7 No.1 P.74-87

http://doi.org/10.1007/s42242-023-00259-x


Customized scafolds for large bone defects using 3D‑printed modular blocks from 2D‑medical images


Author(s):  Anil A. Acar, Evangelos Daskalakis, Paulo Bartolo, Andrew Weightman, Glen Cooper, Gordon Blunn & Bahattin Koc

Affiliation(s):  Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye; more

Corresponding email(s):   bahattin.koc@sabanciuniv.edu

Key Words:  Additive manufacturing, Modular scafolds , Large bone defect , Customized scafold design, Patient-specifc scafolds


Share this article to: More

Anil A. Acar, Evangelos Daskalakis, Paulo Bartolo, Andrew Weightman, Glen Cooper, Gordon Blunn & Bahattin Koc. Customized scafolds for large bone defects using 3D‑printed modular blocks from 2D‑medical images[J]. Journal of Zhejiang University Science D, 2024, 7(1): 74-87.

@article{title="Customized scafolds for large bone defects using 3D‑printed modular blocks from 2D‑medical images",
author="Anil A. Acar, Evangelos Daskalakis, Paulo Bartolo, Andrew Weightman, Glen Cooper, Gordon Blunn & Bahattin Koc",
journal="Journal of Zhejiang University Science D",
volume="7",
number="1",
pages="74-87",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-023-00259-x"
}

%0 Journal Article
%T Customized scafolds for large bone defects using 3D‑printed modular blocks from 2D‑medical images
%A Anil A. Acar
%A Evangelos Daskalakis
%A Paulo Bartolo
%A Andrew Weightman
%A Glen Cooper
%A Gordon Blunn & Bahattin Koc
%J Journal of Zhejiang University SCIENCE D
%V 7
%N 1
%P 74-87
%@ 1869-1951
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-023-00259-x

TY - JOUR
T1 - Customized scafolds for large bone defects using 3D‑printed modular blocks from 2D‑medical images
A1 - Anil A. Acar
A1 - Evangelos Daskalakis
A1 - Paulo Bartolo
A1 - Andrew Weightman
A1 - Glen Cooper
A1 - Gordon Blunn & Bahattin Koc
J0 - Journal of Zhejiang University Science D
VL - 7
IS - 1
SP - 74
EP - 87
%@ 1869-1951
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-023-00259-x


Abstract: 
additive manufacturing (AM) has revolutionized the design and manufacturing of patient-specifc, three-dimensional (3D), complex porous structures known as scafolds for tissue engineering applications. The use of advanced image acquisition techniques, image processing, and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specifc implants and scafolds. However, these sophisticated techniques can be timeconsuming, labor-intensive, and expensive. Moreover, the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients. In this study, a novel design and AM methods are proposed for the development of modular and customizable scafold blocks that can be adapted to ft the bone defect area of a patient. These modular scafold blocks can be combined to quickly form any patient-specifc scafold directly from two-dimensional (2D) medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging, modeling, and 3D printing during surgery. The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation. This algorithm can generate both patient-specifc and average bone models. Additionally, a biomimetic continuous path planning method is developed for the additive manufacturing of scafolds, allowing porous scafold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images. The algorithms are implemented, and the designed scafold blocks are 3D printed using an extrusion-based AM process. Guidelines and instructions are also provided to assist surgeons in assembling scafold blocks for the self-repair of patient-specifc large bone defects.

萨班哲大学Bahattin Koc等 | 使用2D医学影像进行3D打印模块化定制大骨缺损支架

本研究论文聚焦使用2D医学影像进行3D打印模块化定制大骨缺损支架。增材制造技术(AM)革新了组织工程应用中用于患者个体化、三维复杂多孔结构支架的设计和制造。先进的图像获取技术、图像处理和计算机辅助设计方法使得精确设计和增材制造解剖学符合患者个体情况的植入物和支架成为可能。然而这些复杂的技术可能需要花费大量时间、人力和金钱。此外,在紧急治疗时,对于创伤患者可能没有迅速获得必要的成像和制造设备。本研究提出了一种新颖的设计和增材制造方法,用于开发模块化和可定制的支架方块,以适应患者的骨缺损区域。这些模块化支架方块可以根据二维(2D)医学影像,快速组合成任何患者个体化支架,也能解决外科医生无法使用3D打印机或无法等待手术过程中冗长的3D成像、建模和3D打印的问题。该方法首先通过开发骨表面建模算法,根据2D医学影像测量重建患者骨骼模型,无需昂贵的3D成像或分割。该算法可生成患者个体化和平均骨模型。此外,还开发了一种仿生连续路径规划方法,用于根据2D数据或图像直接制造具有所需生物力学特性的多孔支架方块。作者应用该算法,设计的支架方块使用基于挤出的AM工艺进行了3D打印。同时提供指导和说明,以协助外科医生组装支架方块,实现患者个体化大骨缺损的自我修复。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE