Full Text:   <2488>

Summary:  <2155>

CLC number: TP391.4

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-01-20

Cited: 0

Clicked: 7557

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-hu Ma

http://orcid.org/0000-0002-2384-3137

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.3 P.212-223

http://doi.org/10.1631/FITEE.1500255


Local uncorrelated local discriminant embedding for face recognition


Author(s):  Xiao-hu Ma, Meng Yang, Zhao Zhang

Affiliation(s):  School of Computer Science and Technology, Soochow University, Suzhou 215006, China; more

Corresponding email(s):   xhma@suda.edu.cn, eyangmeng@163.com, cszzhang@suda.edu.cn

Key Words:  Feature extraction, Local discriminant embedding, Local uncorrelated criterion, Face recognition



Abstract: 
The feature extraction algorithm plays an important role in face recognition. However, the extracted features also have overlapping discriminant information. A property of the statistical uncorrelated criterion is that it eliminates the redundancy among the extracted discriminant features, while many algorithms generally ignore this property. In this paper, we introduce a novel feature extraction method called local uncorrelated local discriminant embedding (LULDE). The proposed approach can be seen as an extension of a local discriminant embedding (LDE) framework in three ways. First, a new local statistical uncorrelated criterion is proposed, which effectively captures the local information of interclass and intraclass. Second, we reconstruct the affinity matrices of an intrinsic graph and a penalty graph, which are mentioned in LDE to enhance the discriminant property. Finally, it overcomes the small-sample-size problem without using principal component analysis to preprocess the original data, which avoids losing some discriminant information. Experimental results on Yale, ORL, Extended Yale B, and FERET databases demonstrate that LULDE outperforms LDE and other representative uncorrelated feature extraction methods.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE