[1]Belhumeur, P.N., Hespanha, J.P., Kriegman, D., 1997. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Patt. Anal. Mach. Intell., 19(7):711-720.
[2]Belkin, M., Niyogi, P., 2003. Laplacian eigenmaps for dimensionality reduction and data representation. Neur. Comput., 15(6):1373-1396.
[3]Chen, H.T., Chang, H.W., Liu, T.L., 2005. Local discriminant embedding and its variants. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.846-853.
[4]Chen, Y., Zheng, W.S., Xu, X.H., et al., 2013. Discriminant subspace learning constrained by locally statistical uncorrelation for face recognition. Neur. Netw., 42:28-43.
[5]Fan, Z.Z., Xu, Y., Zhang, D., 2011. Local linear discriminant analysis framework using sample neighbors. IEEE Trans. Neur. Netw., 22(7):1119-1132.
[6]He, X.F., Niyogi, P., 2003. Locality preserving projections. Proc. Advances in Neural Information Processing Systems, p.327-334.
[7]Jin, Z., Yang, J.Y., Hu, Z.S., et al., 2001. Face recognition based on the uncorrelated discriminant transformation. Patt. Recog., 34(7):1405-1416.
[8]Jing, X.Y., Zhang, D., Jin, Z., 2003. UODV: improved algorithm and generalized theory. Patt. Recog., 36(11):2593-2602.
[9]Jing, X.Y., Li, S., Zhang, D., et al., 2011. Face recognition based on local uncorrelated and weighted global uncorrelated discriminant transforms. Proc. 18th IEEE Int. Conf. on Image Processing, p.3049-3052.
[10]Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326.
[11]Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323.
[12]Turk, M., Pentland, A., 1991. Eigenfaces for recognition. J. Cogn. Neurosci., 3(1):71-86.
[13]Wong, W.K., Zhao, H.T., 2012. Supervised optimal locality preserving projection. Patt. Recog., 45(1):186-197.
[14]Yan, S.C., Xu, D., Zhang, B.Y., et al., 2007. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Patt. Anal. Mach. Intell., 29(1):40-51.
Open peer comments: Debate/Discuss/Question/Opinion
<1>