Full Text:   <4404>

CLC number: O343.2; TM15

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2009-02-26

Cited: 6

Clicked: 7080

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2009 Vol.10 No.5 P.653-660

http://doi.org/10.1631/jzus.A0820492


Multi-physics coupling field finite element analysis on giant magnetostrictive materials smart component


Author(s):  Zhang-rong ZHAO, Yi-jie WU, Xin-jian GU, Lei ZHANG, Ji-feng YANG

Affiliation(s):  State Key Laboratory of Fluid Power Transmission and Control, Modern Manufacture Engineering Institute, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zhaozhangrong@sina.com, wyj1116@zju.edu.cn

Key Words:  Smart component, Giant magnetostrictive, Finite element method (FEM) modeling, Non-cylinder piston pinhole, Multi-physics coupling field



Abstract: 
This study presents a new method to solve the difficult problem of precise machining a non-cylinder pinhole of a piston using embedded giant magnetostrictive material (GMM) in the component. We propose the finite element model of GMM smart component in electric, magnetic, and mechanical fields by step computation to optimize the design of GMM smart component. The proposed model is implemented by using COMSOL multi-physics V3.2a. The effects of the smart component on the deformation and the system resonance frequencies are studied. The results calculated by the model are in excellent agreement (relative errors are below 10%) with the experimental values.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE