Full Text:   <1000>

Summary:  <158>

CLC number: 

On-line Access: 2025-06-19

Received: 2025-02-24

Revision Accepted: 2025-05-01

Crosschecked: 2025-09-19

Cited: 0

Clicked: 1052

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jingyi SUN

https://orcid.org/0009-0001-8061-1287

Borui LEI

https://orcid.org/0009-0006-0661-1664

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.9 P.811-831

http://doi.org/10.1631/jzus.A2500054


Key factors influencing perovskite film crystallization in blade-coating processes


Author(s):  Jingyi SUN, Borui LEI, Jingjing XUE

Affiliation(s):  State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   jjxue@zju.edu.cn

Key Words:  Perovskite thin films, Blade-coating, Crystal growth, Optoelectronic properties


Share this article to: More |Next Article >>>

Jingyi SUN, Borui LEI, Jingjing XUE. Key factors influencing perovskite film crystallization in blade-coating processes[J]. Journal of Zhejiang University Science A, 2025, 26(9): 811-831.

@article{title="Key factors influencing perovskite film crystallization in blade-coating processes",
author="Jingyi SUN, Borui LEI, Jingjing XUE",
journal="Journal of Zhejiang University Science A",
volume="26",
number="9",
pages="811-831",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2500054"
}

%0 Journal Article
%T Key factors influencing perovskite film crystallization in blade-coating processes
%A Jingyi SUN
%A Borui LEI
%A Jingjing XUE
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 9
%P 811-831
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2500054

TY - JOUR
T1 - Key factors influencing perovskite film crystallization in blade-coating processes
A1 - Jingyi SUN
A1 - Borui LEI
A1 - Jingjing XUE
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 9
SP - 811
EP - 831
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2500054


Abstract: 
Perovskite films have fostered significant progress in the field of optoelectronic devices, particularly in solar cells, due to their excellent optoelectronic properties and cost-effective fabrication process. As a promising technique for large-scale industrial production of perovskite films, the blade-coating method has attracted wide attention because of its low cost, large-area coating capability, and simplicity. However, during the blade-coating process, perovskite films often present challenges such as poor film uniformity, high defect density, and uneven crystallization, which greatly affect the efficiency and stability of the devices. In this review, we summarize the application of blade-coating methods to the fabrication of perovskite films, with a focus on analyzing key factors affecting film quality, including precursor solution formulations, solvent characteristics, evaporation rate, crystallization kinetics, and film thickness. In particular, we discuss the impact of environmental factors on the perovskite crystallization process during blade-coating and explore how optimizing the blade-coating process and precursor solution composition can improve film uniformity and device performance. Additionally, we discuss the main challenges and shortcomings in the blade-coating preparation of perovskite films, including defects during large-area fabrication, differences in solvent evaporation rates, and their effects on crystallization quality. Strategies for addressing these issues are proposed. Finally, the prospects of the blade-coating method in large-scale production of perovskite films are outlined, emphasizing the importance of a deeper understanding of perovskite film crystallization mechanisms and the development of novel additives to enhance the performance of perovskite optoelectronic devices and accelerate their industrialization.

影响刮涂过程中钙钛矿薄膜结晶的关键因素

作者:孙静怡,雷博睿,薛晶晶
机构:浙江大学,材料科学与工程学院,硅及先进半导体全国重点实验室,中国杭州,310027
概要:钙钛矿薄膜由于其优异的光电性能和低成本的制造工艺,在光电器件领域,特别是太阳能电池领域取得了重大进展。作为一种很有前景的钙钛矿薄膜大规模工业生产技术,刮涂法因其成本低、大面积涂布能力强、操作简单等优点而受到广泛关注。然而,在涂布过程中,钙钛矿薄膜往往存在薄膜均匀性差、缺陷密度高、结晶不均匀等问题,极大地影响了器件的效率和稳定性。本文综述了刮涂法在钙钛矿薄膜制备中的应用,重点分析了影响薄膜质量的主要因素,包括前驱体溶液配方、溶剂特性、蒸发速率、结晶动力学和薄膜厚度等。特别地,本文讨论了环境因素对刮涂过程中钙钛矿结晶的影响,并探讨了如何优化刮涂工艺和前驱体溶液组成来提高薄膜均匀性和器件性能。此外,本文还讨论了刮涂法制备钙钛矿薄膜面临的主要挑战和缺点,包括大面积制备过程中的缺陷,溶剂蒸发速率的差异以及它们对结晶质量的影响,并提出了解决这些问题的方法。最后,本文展望了刮涂法在钙钛矿薄膜大规模生产中的应用前景,强调了深入了解钙钛矿薄膜结晶机理和开发新型添加剂对提高钙钛矿光电器件性能和推动其产业化的重要性。

关键词:钙钛矿薄膜;刮涂法;晶体生长

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AbateSY, QiYF, ZhangQQ, et al., 2024. Eco-friendly solvent engineered CsPbI2.77Br0.23 ink for large-area and scalable high performance perovskite solar cells. Advanced Materials, 36(11):2310279.

[2]Abo JabalM, HomedeE, PismenLM, et al., 2017. Controlling Marangoni flow directionality: patterning nano-materials using sessile and sliding volatile droplets. The European Physical Journal Special Topics, 226(6):1307-1324.

[3]AristidouN, Sanchez-MolinaI, ChotchuangchutchavalT, et al., 2015. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angewandte Chemie International Edition, 54(28):8208-8212.

[4]AristidouN, EamesC, Sanchez-MolinaI, et al., 2017. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications, 8:15218.

[5]BassKK, McAnallyRE, ZhouSL, et al., 2014. Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chemical Communications, 50(99):15819-15822.

[6]Belay AdugnaG, Yimer AbateS, TaoYT, 2022. High-efficiency and scalable Solution-sheared perovskite solar cells using green solvents. Chemical Engineering Journal, 437:135477.

[7]BryantD, AristidouN, PontS, et al., 2016. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy & Environmental Science, 9(5):1655-1660.

[8]CaprioglioP, SmithJA, OliverRDJ, et al., 2023. Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells. Nature Communications, 14(1):932.

[9]ChenB, YuZJ, ManzoorS, et al., 2020. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 4(4):850-864.

[10]ChenCS, ChenJX, HanHC, et al., 2022. Perovskite solar cells based on screen-printed thin films. Nature, 612(7939):266-271.

[11]ChenH, YeF, TangWT, et al., 2017. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 550(7674):92-95.

[12]ChenH, MaxwellA, LiCW, et al., 2023. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature, 613(7945):676-681.

[13]ChenSS, XiaoX, ChenB, et al., 2021a. Crystallization in one-step solution deposition of perovskite films: upward or downward? Science Advances, 7(4):eabb2412.

[14]ChenSS, DaiXZ, XuS, et al., 2021b. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science, 373(6557):902-907.

[15]ChengR, ChungCC, ZhangH, et al., 2019. An air knife–assisted recrystallization method for ambient-process planar per

[16]ovskite solar cells and its dim-light harvesting. Small, 15(8):1804465.

[17]ChoTS, KwonYD, KwonSB, 2009. A study of the influence of air-knife tilting on coating thickness in hot-dip galvanizing. Journal of Thermal Science, 18(3):262-267.

[18]ChristiansJA, Miranda HerreraPA, KamatPV, 2015. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society, 137(4):1530-1538.

[19]ChuSL, ChenWJ, FangZB, et al., 2021. Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nature Communications, 12(1):147.

[20]ChuehCC, LiaoCY, ZuoF, et al., 2015. The roles of alkyl halide additives in enhancing perovskite solar cell performance. Journal of Materials Chemistry A, 3(17):9058-9062.

[21]DengW, WanF, PengXX, et al., 2022. Super hydrophilic, ultra bubble repellent substrate for pinhole free Dion–Jacobson perovskite solar cells. Applied Physics Letters, 121(23):233902.

[22]DengYH, PengE, ShaoYC, et al., 2015a. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 8(5):1544-1550.

[23]DengYH, WangQ, YuanYB, et al., 2015b. Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Materials Horizons, 2(6):578-583.

[24]DengYH, ZhengXP, BaiY, et al., 2018. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3(7):560-566.

[25]DengYH, van BrackleCH, DaiXZ, et al., 2019. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Science Advances, 5(12):eaax7537.

[26]DingJ, HanQW, GeQQ, et al., 2019. Fully air-bladed high-efficiency perovskite photovoltaics. Joule, 3(2):402-416.

[27]DongQ, FangY, ShaoY, et al., 2015. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347(6225):967-970.

[28]DuanCY, GaoH, XiaoK, et al., 2025. Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells. Nature Energy, 10(3):318-328.

[29]EdwardsAMJ, Ledesma-AguilarR, NewtonMI, et al., 2016. Not spreading in reverse: the dewetting of a liquid film into a single drop. Science Advances, 2(9):e1600183.

[30]FengYM, MalloN, LindsayO, et al., 2025. Enhanced efficiency and stability in blade-coated perovskite solar cells through using 2,‍3,‍4,‍5,‍6-pentafluorophenylethylammonium halide additives. ACS Applied Materials & Interfaces, 17(5):7670-7678.

[31]FuF, LiJ, YangTCJ, et al., 2022. Monolithic perovskite-silicon tandem solar cells: from the lab to fab? Advanced Materials, 34(24):2106540.

[32]GaoH, XiaoK, LinRX, et al., 2024. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science, 383(6685):855-859.

[33]GaoLL, LiCX, LiCJ, et al., 2017a. Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. Journal of Materials Chemistry A, 5(4):1548-1557.

[34]GaoLL, ZhangKJ, ChenN, et al., 2017b. Boundary layer tuning induced fast and high performance perovskite film precipitation by facile one-step solution engineering. Journal of Materials Chemistry A, 5(34):18120-18127.

[35]GeQQ, DingJ, LiuJ, et al., 2016. Promoting crystalline grain growth and healing pinholes by water vapor modulated post-annealing for enhancing the efficiency of planar perovskite solar cells. Journal of Materials Chemistry A, 4(35):13458-13467.

[36]GeX, HuangZX, ShiB, et al., 2025. Crystallization control of blade-coated wide bandgap FACs-based perovskite. Advanced Functional Materials, 35(12):2417493.

[37]GhoshAK, JeongBH, HuangXF, et al., 2008. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. Journal of Membrane Science, 311(1-2):34-45.

[38]HamillJC, SchwartzJ, LooYL, 2018. Influence of solvent coordination on hybrid organic–inorganic perovskite formation. ACS Energy Letters, 3(1):92-97.

[39]HanJY, ParkK, TanS, et al., 2025. Perovskite solar cells. Nature Reviews Methods Primers, 5(1):3.

[40]HeM, LiB, CuiX, et al., 2017. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 8:16045.

[41]HeoJH, SongDH, ImSH, 2014. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Advanced Materials, 26(48):8179-8183.

[42]HuGH, YangLS, YangZY, et al., 2020. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Science Advances, 6(33):eaba5029.

[43]HuH, LarsonRG, 2005. Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 21(9):3972-3980.

[44]HuQ, ZhaoLC, WuJ, et al., 2017. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4- cage nanoparticles. Nature Communications, 8:15688.

[45]HuZH, CaiHK, LuoXG, et al., 2025. Nonvolatile and strongly coordinating solvent enables blade-coating of efficient FACs-based perovskite solar cells. Small Methods, in press.

[46]HuangFZ, DkhissiY, HuangWC, et al., 2014. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy, 10:10-18.

[47]HuangJB, TanSQ, LundPD, et al., 2017. Impact of H2O on organic–inorganic hybrid perovskite solar cells. Energy & Environmental Science, 10(11):2284-2311.

[48]HuangKW, LiMH, ChenYT, et al., 2024. Fast fabrication of μm-thick perovskite films by using a one-step doctor-blade coating method for direct X-ray detectors. Journal of Materials Chemistry C, 12(4):1533-1542.

[49]HuangZX, GeX, LiuZ, et al., 2024. Highly efficient blade-coated 1.67 eV p-i-n perovskite solar cells enabled by a hybrid self-assembled monolayer and surface passivation. ACS Applied Energy Materials, 7(24):11683-11690.

[50]JangGS, KimY, KimYY, et al., 2022. Ambient air-processed wide-bandgap perovskite solar cells with well-controlled film morphology for four-terminal tandem application. Solar RRL, 6(8):2200252.

[51]JeongDN, LeeDK, SeoS, et al., 2019. Perovskite cluster-containing solution for scalable D-bar coating toward high-throughput perovskite solar cells. ACS Energy Letters, 4(5):1189-1195.

[52]JiaP, ChenGY, LiG, et al., 2024. Intermediate phase suppression with long chain diammonium alkane for high performance wide-bandgap and tandem perovskite solar cells. Advanced Materials, 36(25):2400105.

[53]KeWJ, XiaoCX, WangCL, et al., 2016. Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells. Advanced Materials, 28(26):5214-5221.

[54]KimHS, Mora-SeroI, Gonzalez-PedroV, et al., 2013. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Communications, 4:2242.

[55]KimM, KimGH, LeeTK, et al., 2019. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 3(9):2179-2192.

[56]KimSW, MoonSJ, KimSH, et al., 2023. Reducing humidity dependency of ambient-air-processed wide-bandgap inverted perovskite solar cells. ACS Energy Letters, 8(11):4777-4781.

[57]KoHS, LeeJW, ParkNG, 2015. 15.76% Efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. Journal of Materials Chemistry A, 3(16):8808-8815.

[58]KojimaA, TeshimaK, ShiraiY, et al., 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17):6050-6051.

[59]KwonSB, LeeDW, KwonYD, 2007. Experimental and computational studies on Coanda nozzle flow for the air knife application. Journal of Thermal Science, 16(2):164-169.

[60]le BerreM, ChenY, BaiglD, 2009. From convective assembly to landau-levich deposition of multilayered phospholipid films of controlled thickness. Langmuir, 25(5):2554-2557.

[61]LeeHS, KimMK, PaeSR, et al., 2020. Tuning the wettability of the blade enhances solution-sheared perovskite solar cell performance. Nano Energy, 74:104830.

[62]LeeJ, KangH, KimG, et al., 2017. Achieving large-area planar perovskite solar cells by introducing an interfacial compatibilizer. Advanced Materials, 29(22):1606363.

[63]LeeSH, HongS, KimHJ, 2022. Selection of a suitable solvent additive for 2-methoxyethanol-based antisolvent-free perovskite film fabrication. ACS Applied Materials & Interfaces, 14(34):39132-39140.

[64]LeguyAMA, HuYH, Campoy-QuilesM, et al., 2015. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chemistry of Materials, 27(9):3397-3407.

[65]LiFZ, DengX, QiF, et al., 2020. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. Journal of the American Chemical Society, 142(47):20134-20142.

[66]LiX, BiDQ, YiCY, et al., 2016. A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science, 353(6294):58-62.

[67]LiZ, KleinTR, KimDH, et al., 2018. Scalable fabrication of perovskite solar cells. Nature Reviews Materials, 3(4):18017.

[68]LiZ, LiB, WuX, et al., 2022. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 376(6591):416-420.

[69]LiangPW, LiaoCY, ChuehCC, et al., 2014. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Advanced Materials, 26(22):3748-3754.

[70]LiuH, ShiGY, KhanR, et al., 2024. Large-area flexible perovskite light-emitting diodes enabled by inkjet printing. Advanced Materials, 36(8):2309921.

[71]LiuJ, de BastianiM, AydinE, et al., 2022. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science, 377(6603):302-306.

[72]LiuJ, HeYC, DingL, et al., 2024. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature, 635(8039):596-603.

[73]LiuK, LiangQ, QinMC, et al., 2020. Zwitterionic-surfactant-assisted room-temperature coating of efficient perovskite solar cells. Joule, 4(11):2404-2425.

[74]LuJF, JiangLC, LiW, et al., 2017. Diammonium and monoammonium mixed-organic-cation perovskites for high performance solar cells with improved stability. Advanced Energy Materials, 7(18):1700444.

[75]MalinowskiR, VolpeG, ParkinIP, et al., 2018. Dynamic control of particle deposition in evaporating droplets by an external point source of vapor. The Journal of Physical Chemistry Letters, 9(3):659-664.

[76]NiZY, JiaoHY, FeiCB, et al., 2022. Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nature Energy, 7(1):65-73.

[77]NiuGD, LiWZ, MengFQ, et al., 2014. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2(3):705-710.

[78]NiuGD, GuoXD, WangLD, 2015. Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17):8970-8980.

[79]NiuGD, LiWZ, LiJW, et al., 2017. Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Advances, 7(28):17473-17479.

[80]NoblesseF, HendrixD, FaulL, et al., 2006. Simple analytical expressions for the height, location, and steepness of a ship bow wave. Journal of Ship Research, 50(4):360-370.

[81]NoblesseF, DelhommeauG, GuilbaudM, et al., 2008. Simple analytical relations for ship bow waves. Journal of Fluid Mechanics, 600:105-132.

[82]Odysseas KosmatosK, TheofylaktosL, GiannakakiE, et al., 2019. Μethylammonium chloride: a key additive for highly efficient, stable, and up-scalable perovskite solar cells. Energy & Environmental Materials, 2(2):79-92.

[83]O’MahonyFTF, LeeYH, JellettC, et al., 2015. Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2. Journal of Materials Chemistry A, 3(14):7219-7223.

[84]ParkJ, KimJ, YunHS, et al., 2023. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616(7958):724-730.

[85]ParkNG, 2016. Crystal growth engineering for high efficiency perovskite solar cells. CrystEngComm, 18(32):5977-5985.

[86]ParkNG, 2021. Green solvent for perovskite solar cell production. Nature Sustainability, 4(3):192-193.

[87]ParkNG, ZhuK, 2020. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials, 5(5):333-350.

[88]Peña-CamargoF, CaprioglioP, ZuFS, et al., 2020. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Letters, 5(8):2728-2736.

[89]PhungN, VerheijenM, TodinovaA, et al., 2022. Enhanced self-assembled monolayer surface coverage by ALD NiO in p-i-n perovskite solar cells. ACS Applied Materials & Interfaces, 14(1):2166-2176.

[90]PuDX, ZhouS, GuanHL, et al., 2024. Enhancing efficiency and intrinsic stability of large-area blade-coated wide-bandgap perovskite solar cells through strain release. Advanced Functional Materials, 34(17):2314349.

[91]QuanLN, YuanMJ, CominR, et al., 2016. Ligand-stabilized reduced-dimensionality perovskites. Journal of the American Chemical Society, 138(8):2649-2655.

[92]RazzaS, di GiacomoF, MatteocciF, et al., 2015. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. Journal of Power Sources, 277:286-291.

[93]RenZJ, CuiZW, ShiXY, et al., 2023. Poly(carbazole phosphonic acid) as a versatile hole-transporting material for p-i-n perovskite solar cells and modules. Joule, 7(12):2894-2904.

[94]RongYG, HuY, MeiAY, et al., 2018. Challenges for commercializing perovskite solar cells. Science, 361(6408):eaat8235.

[95]SaidaminovMI, AbdelhadyAL, MuraliB, et al., 2015. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 6:7586.

[96]ShahiduzzamanM, YamamotoK, FurumotoY, et al., 2017. Viscosity effect of ionic liquid-assisted controlled growth of CH3NH3PbI3 nanoparticle-based planar perovskite solar cells. Organic Electronics, 48:147-153.

[97]SongS, HörantnerMT, ChoiK, et al., 2017. Inducing swift nucleation morphology control for efficient planar perovskite solar cells by hot-air quenching. Journal of Materials Chemistry A, 5(8):3812-3818.

[98]SongZN, McElvanyCL, PhillipsAB, et al., 2017. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy & Environmental Science, 10(6):1297-1305.

[99]StolterfohtM, WolffCM, MárquezJA, et al., 2018. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nature Energy, 3(10):847-854.

[100]StolterfohtM, CaprioglioP, WolffCM, et al., 2019. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy & Environmental Science, 12(9):2778-2788.

[101]SunB, WangWW, LuH, et al., 2021. Tuning the interactions of methylammonium acetate with acetonitrile to create efficient perovskite solar cells. The Journal of Physical Chemistry C, 125(12):6555-6563.

[102]SunR, GuoJ, SunCK, et al., 2019. A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy & Environmental Science, 12(1):384-395.

[103]SzostakR, SanchezS, MarcheziPE, et al., 2021. Revealing the perovskite film formation using the gas quenching method by in situ GIWAXS: morphology, properties, and device performance. Advanced Functional Materials, 31(4):2007473.

[104]TangY, ZhangYC, ZhouXM, et al., 2023. Solvent engineering of scalable deposited wide-bandgap perovskites for efficient monolithic perovskite-organic tandem solar cells. Nano Energy, 114:108653.

[105]TealeS, DeganiM, ChenB, et al., 2024. Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nature Energy, 9(7):779-792.

[106]TianCC, GaoXF, LiJ, et al., 2022. Scalable growth of stable wide-bandgap perovskite towards large-scale tandem photovoltaics. Solar RRL, 6(7):2200134.

[107]TsaiPT, YuKC, ChangCJ, et al., 2015. Large-area organic solar cells by accelerated blade coating. Organic Electronics, 22:166-172.

[108]VachaparambilKJ, EinarsrudKE, 2018. Explanation of bubble nucleation mechanisms: a gradient theory approach. Journal of The Electrochemical Society, 165(10):E504-E512.

[109]VidalR, Alberola-BorràsJA, HabisreutingerSN, et al., 2021. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nature Sustainability, 4(3):277-285.

[110]WangF, MaJL, XieFY, et al., 2016. Organic cation-dependent degradation mechanism of organotin halide perovskites. Advanced Functional Materials, 26(20):3417-3423.

[111]WangFF, LiuTX, LiuYY, et al., 2024. A polymeric hole transporter with dual-interfacial interactions enables 25%-efficiency blade-coated perovskite solar cells. Advanced Materials, 36(52):2412059.

[112]WangG, LiaoLP, ChenLJ, et al., 2020. Perovskite solar cells fabricated under ambient air at room temperature without any post-treatment. Organic Electronics, 86:105918.

[113]WangJ, FuWF, JariwalaS, et al., 2019. Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics. ACS Energy Letters, 4(1):222-227.

[114]WangX, FanYP, WangL, et al., 2020. Perovskite solution aging: what happened and how to inhibit? Chem, 6(6):1369-1378.

[115]WangZ, ShiZJ, LiTT, et al., 2017. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angewandte Chemie International Edition, 56(5):1190-1212.

[116]WangZP, LinQQ, ChmielFP, et al., 2017. Efficient ambient-air-stable solar cells with 2D‍–‍3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2(9):17135.

[117]WhitakerJB, KimDH, LarsonBW, et al., 2018. Scalable slot-die coating of high performance perovskite solar cells. Sustainable Energy & Fuels, 2(11):2442-2449.

[118]WhiteheadCB, ÖzkarS, FinkeRG, 2019. LaMer’s 1950 model for particle formation of instantaneous nucleation and diffusion-controlled growth: a historical look at the model’s origins, assumptions, equations, and underlying sulfur sol formation kinetics data. Chemistry of Materials, 31(18):7116-7132.

[119]WilkinsonJ, TamC, AskounisA, et al., 2021. Suppression of the coffee-ring effect by tailoring the viscosity of pharmaceutical sessile drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 614:126144.

[120]WilliamsST, ZuoF, ChuehCC, et al., 2014. Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano, 8(10):10640-10654.

[121]WuCC, WangK, LiJ, et al., 2021. Volatile solution: the way toward scalable fabrication of perovskite solar cells? Matter, 4(3):775-793.

[122]WuJJ, LiuZK, YangYR, et al., 2025. Regulating precursor viscosity with inert solvent additives for efficient blade-coated perovskite solar cells. Small Methods, in press.

[123]WuWQ, WangQ, FangYJ, et al., 2018. Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nature Communications, 9(1):1625.

[124]WuWQ, YangZB, RuddPN, et al., 2019. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Science Advances, 5(3):eaav8925.

[125]XiaR, GaoXX, ZhangY, et al., 2020. An efficient approach to fabricate air-stable perovskite solar cells via addition of a self-polymerizing ionic liquid. Advanced Materials, 32(40):2003801.

[126]XiaoMD, HuangFZ, HuangWC, et al., 2014. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie International Edition, 53(37):9898-9903.

[127]XuF, BaoZ, TuYG, et al., 2025. Blade-coated mixed-halide wide-bandgap perovskite photovoltaics: progress and challenges. Advanced Materials Technologies, 10(8):2401434.

[128]XuXW, MaCQ, XieYM, et al., 2018. Air-processed mixed-cation Cs0.15FA0.85PbI3 planar perovskite solar cells derived from a PbI2–CsI–FAI intermediate complex. Journal of Materials Chemistry A, 6(17):7731-7740.

[129]YangG, NiZY, YuZJ, et al., 2022. Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nature Photonics, 16(8):588-594.

[130]YangJL, SiempelkampBD, LiuDY, et al., 2015. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 9(2):1955-1963.

[131]YangMJ, ZhouYY, ZengYN, et al., 2015. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Advanced Materials, 27(41):6363-6370.

[132]YangMJ, ZhangTY, SchulzP, et al., 2016. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nature Communications, 7:12305.

[133]YangS, ChenSS, MosconiE, et al., 2019. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 365(6452):473-478.

[134]YangXY, WuMM, DoiM, et al., 2022. Evaporation dynamics of sessile droplets: the intricate coupling of capillary, evaporation, and marangoni flow. Langmuir, 38(16):4887-4893.

[135]YangYR, WuJJ, ZhangK, et al., 2025. Tailored colloidal shapes in precursor solutions for efficient blade-coated perovskite solar modules. Advanced Materials, 37(9):2418790.

[136]YangZB, ChuehCC, ZuoF, et al., 2015. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Advanced Energy Materials, 5(13):1500328.

[137]YeF, ChenH, XieFX, et al., 2016. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 9(7):2295-2301.

[138]YinRY, WuYT, HuangZJ, et al., 2025. Fabricating perovskite films for solar modules from small to large scale. Advanced Functional Materials, 35(24):2419184.

[139]YuXH, XingRB, PengZX, et al., 2019. To inhibit coffee ring effect in inkjet printing of light-emitting polymer films by decreasing capillary force. Chinese Chemical Letters, 30(1):135-138.

[140]YuY, ZhangF, HouT, et al., 2021. A review on gas-quenching technique for efficient perovskite solar cells. Solar RRL, 5(10):2100386.

[141]ZengLX, ChenS, ForberichK, et al., 2020. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy & Environmental Science, 13(12):4666-4690.

[142]ZhangAF, LiMY, DongC, et al., 2024. π–π stacking at the Perovskite/C60 interface enables high-efficiency wide-bandgap perovskite solar cells. Small, 20(35):2401197.

[143]ZhangF, ParkSY, YaoCL, et al., 2022. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 375(6576):71-76.

[144]ZhangM, BingJM, ChoY, et al., 2019. Synergistic effect of potassium and iodine from potassium triiodide complex additive on gas-quenched perovskite solar cells. Nano Energy, 63:103853.

[145]ZhangTY, DarMI, LiG, et al., 2017. Bication lead iodide 2D perovskite component to stabilize inorganic α‍-‍CsPbI3 perovskite phase for high-efficiency solar cells. Science Advances, 3(9):e1700841.

[146]ZhangW, PathakS, SakaiN, et al., 2015. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nature Communications, 6:10030.

[147]ZhangY, CuiQP, ShaoFQ, et al., 2012. Influence of air-knife wiping on coating thickness in hot-dip galvanizing. Journal of Iron and Steel Research International, 19(6):70-78.

[148]ZhangZY, ShangJH, GeHH, et al., 2023. Suppressing halide phase segregation in wide-bandgap perovskite film by co-doping strategy for high-performance and stable perovskite solar cells. Materials Today Physics, 37:101187.

[149]ZhaoYX, ZhuK, 2014. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. The Journal of Physical Chemistry C, 118(18):9412-9418.

[150]ZhengJH, ZhangM, LauCFJ, et al., 2017. Spin-coating free fabrication for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 168:165-171.

[151]ZhengXT, KongWC, WenJ, et al., 2024. Solvent engineering for scalable fabrication of perovskite/silicon tandem solar cells in air. Nature Communications, 15(1):4907.

[152]ZhengZH, LiFM, GongJ, et al., 2022. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Advanced Materials, 34(21):2109879.

[153]ZhouXM, LaiHW, HuangT, et al., 2023. Suppressing nonradiative losses in wide-band-gap perovskites affords efficient and printable all-perovskite tandem solar cells with a metal-free charge recombination layer. ACS Energy Letters, 8(1):502-512.

[154]ZhouZM, WangZW, ZhouYY, et al., 2015. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angewandte Chemie International Edition, 54(33):9705-9709.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE