CLC number: Q968
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-03-17
Cited: 0
Clicked: 5152
Citations: Bibtex RefMan EndNote GB/T7714
Fa-zhong Yang, Bin Yang, Bei-bei Li, Chun Xiao. Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid[J]. Journal of Zhejiang University Science B, 2015, 16(4): 264-274.
@article{title="Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid",
author="Fa-zhong Yang, Bin Yang, Bei-bei Li, Chun Xiao",
journal="Journal of Zhejiang University Science B",
volume="16",
number="4",
pages="264-274",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400151"
}
%0 Journal Article
%T Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid
%A Fa-zhong Yang
%A Bin Yang
%A Bei-bei Li
%A Chun Xiao
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 4
%P 264-274
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400151
TY - JOUR
T1 - Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid
A1 - Fa-zhong Yang
A1 - Bin Yang
A1 - Bei-bei Li
A1 - Chun Xiao
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 4
SP - 264
EP - 274
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400151
Abstract: Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-induced inhibitory effects of the toxin produced by A. alternata on the rose aphid, Macrosiphum rosivorum, when the toxin was applied to leaves of the rose, Rosa chinensis. The results demonstrated that the purified crude toxin was non-harmful to rose plants and rose aphids, but had an intensive inhibitory effect on the multiplication of aphids. The inhibitory index against rose aphids reached 87.99% when rose plants were sprayed with the toxin solution at a low concentration. Further results from bioassays with aphids and high performance liquid chromatography (HPLC) analyses demonstrated that tenuazonic acid (TeA) was one of the most important resistance-related active components in the crude toxin. The content of TeA was 0.1199% in the crude toxin under the HPLC method. Similar to the crude toxin, the inhibitory index of pure TeA reached 83.60% 15 d after the rose plants were sprayed with pure TeA solution at the lower concentration of 0.060 μg/ml, while the contents of residual TeA on the surface and in the inner portion of the rose plants were only 0.04 and 0.00 ng/g fresh weight of TeA-treated rose twigs, respectively, 7 d after the treatment. Our results show that TeA, an active component in the A. alternata toxin, can induce the indirect plant-mediated responses in rose plants to intensively enhance the plant’s resistances against rose aphids, and the results are very helpful to understand the plant-mediated interaction between fungi and insects on their shared host plants.
[1]Abbas, H.K., Vesonder, R.F., Boyette, C.D., et al., 1993. Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to jimsonweed (Datura stramonium). Can. J. Bot., 71(1):155-160.
[2]Berestetskiy, A.O., 2008. A review of fungal phytotoxins: from basic studies to practical use. Appl. Biochem. Microbiol., 44(5):453-465.
[3]Bostock, R.M., Karban, R., Thaler, J.S., et al., 2001. Signal interactions in induced resistance to pathogens and insect herbivores. Eur. J. Plant Pathol., 107(1):103-111.
[4]Chelkowski, J., Visconti, A., 1992. Alternaria: Biology, Plant Diseases and Metabolites. Elsevier, Amsterdam, the Netherlands, p.449-541.
[5]Chen, S., Dai, X., Qiang, S., et al., 2005. Effect of a nonhost-selective toxin from Alternaria alternata on chloroplast-electron transfer activity in Eupatorium adenophorum. Plant Pathol., 54(5):671-677.
[6]Cipollini, D., Enright, S., Traw, M.B., et al., 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol. Ecol., 13(6):1643-1653.
[7]Davis, N.D., Diener, U.L., Morgan-Jones, G., 1977. Tenuazonic acid production by Alternaria alternata and Alternaria tenuissima isolated from cotton. Appl. Environ. Microbiol., 34(2):155-157.
[8]Griffin, G.F., Chu, F.S., 1983. Toxicity of the Alternaria metabolites alternariol, alternariol methyl ether, altenuene, and tenuazonic acid in the chicken embryo assay. Appl. Environ. Microbiol., 46(6):1420-1422.
[9]Hammerschmidt, R., 1999. Induced disease resistance: how do induced plants stop pathogens? Physiol. Mol. Plant Pathol., 55(2):77-84.
[10]Hatcher, P.E., Paul, N.D., Ayres, P.G., et al., 1995. Interactions between Rumex spp., herbivore and a rust fungus: the effect of Uromyces rumicis infection on leaf nutritional quality. Funct. Ecol., 9(1):97-105.
[11]Heath, M.C., Skalamera, D., 1997. Cellular interactions between plants and biotrophic fungal parasites. Adv. Bot. Res., 24(6):195-225.
[12]Heil, M., Bostock, R., 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot., 89(5):503-512.
[13]Hunter, M.D., 2000. Mixed signals and cross-talk: interactions between plants, insects and plant pathogens. Agric. For. Entomol., 2(3):155-161.
[14]Kaul, S., Wani, M., Dhar, K.L., et al., 2008. Production and GC-MS trace analysis of methyl eugenol from endophytic isolate of Alternaria from rose. Ann. Microbiol., 58(3):443-445.
[15]Kloepper, J.W., Tuzun, S., Kuć, J.A., 1992. Proposed definitions related to induced disease resistance. Biocontrol Sci. Technol., 2(4):349-351.
[16]Kruess, L., 2002. Indirect interaction between a fungal plant pathogen and a herbivorous beetle of the weed Cirsium arvense. Oecologia, 130(4):563-569.
[17]Ma, Y.F., Xiao, C., 2013. Push-pull effects of three plant secondary metabolites on oviposition of the potato tuber moth, Phthorimaea operculella. J. Insect Sci., 13:128.
[18]Montesano, M., Brader, G., Palva, E.T., 2003. Pathogen derived elicitors: searching for receptors in plants. Mol. Plant Pathol., 4(1):73-79.
[19]Ostry, V., 2008. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J., 1(2):175-188.
[20]Paul, N.D., Hatcher, P.E., Taylor, J.E., 2000. Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci., 5(5):220-225.
[21]Rayamajhi, M.B., Van, T.K., Pratt, P.D., et al., 2006. Interactive association between Puccinia psidii and Oxyops vitiosa, two introduced natural enemies of Melaleuca quinquenervia in Florida. Biol. Control, 37(1):56-67.
[22]Rosett, T., Sankhala, R.H., Stickings, C.E., et al., 1957. Studies in the biochemistry of micro-organism. 103. Metabolites of Alternaria tenuis Auct.: culture filtrate products. Biochem. J., 67(3):390-400.
[23]Rostás, M., Hilker, M., 2002. Asymmetric plant-mediated cross-effects between a herbivorous insect and a phytopathogenic fungus. Agric. Forest Entomol., 4(3):223-231.
[24]Rostás, M., Simon, M., Hilker, M., 2003. Ecological cross-effects of induced plant responses towards herbivores and phytopathogenic fungi. Basic Appl. Ecol., 4(1):43-62.
[25]Simon, M., Hilker, M., 2005. Does rust infection of willow affect feeding and oviposition behavior of willow leaf beetles? J. Insect Behav., 18(1):115-129.
[26]Stout, M.J., Fidantsef, A.L., Duffey, S.S., et al., 1999. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol., 54(3-4):115-130.
[27]Strange, R.N., 2003. Introduction to Plant Pathology. John Wiley & Sons, Chichester, UK, p.8-37.
[28]Stribley, M.F., Moores, G.D., Devonshire, A.L., et al., 1983. Application of the FAO-recommended method for detecting insecticide resistance in Aphis jabae Scopoli, Sitobion avenae (F.), Metopolophium dirhodum (Walker) and Rhopalosiphum padi (L.) (Hemiptera: Aphididae). Bull. Entomol. Res., 73(1):107-115.
[29]Strobel, G., Kenfield, D., Bunkers, G., et al., 1991. Phytotoxins as potential herbicides. Experientia, 47(8):819-826.
[30]Sugimoto, N., Osakabe, M., 2014. Cross-resistance between cyenopyrafen and pyridaben in the twospotted spider mite Tetranychus urticae (Acari: Tetranychidae). Pest Manag. Sci., 70(7):1090-1096.
[31]Thomma, B.P.H.J., 2003. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol., 4(4):225-236.
[32]Wagner, S., Boyle, C., 1995. Changes in carbohydrate, protein and chlorophyll content, and enzyme activity during the switch from uredinio-to teliospore sporulation in the bean-rust fungus Uromyces appendiculatus (Pers.) Link. J. Phytopathol., 143(11-12):633-638.
[33]Xiao, C., Gregg, P.C., Hu, W., et al., 2002. Attraction of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), to volatiles from wilted leaves of a non-host plant, Pterocarya stenoptera. Appl. Entomol. Zool., 37(1):1-6.
[34]Yang, F.Z., Li, Y., Yang, B., 2013. The inhibitory effects of rose powdery mildew infection on the oviposition behaviour and performance of beet armyworms. Entomol. Exp. Appl., 148(1):39-47.
[35]Yekeler, H., Bitmis, K., Özcelik, N., et al., 2001. Analysis of toxic effects of Alternaria toxins on esophagus of mice by light and electron microscopy. Toxicol. Pathol., 29(4):492-497.
[36]Zhang, L.H., 2003. Quorum quenching and proactive host defense. Trends Plant Sci., 8(5):238-244.
[37]Zhao, J., Sakai, K., 2003. Multiple signalling pathways mediate fungal elicitor-induced β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J. Exp. Bot., 54(383):647-656.
[38]Zhou, B., Qiang, S., 2007. Degradation of tenuazonic acid from Alternaria alternata in soil. J. Agro-Environ. Sci., 26(8):572-576 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>