Full Text:   <3009>

Summary:  <2123>

CLC number: TM923.61

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-07-14

Cited: 2

Clicked: 7886

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jin Hu

http://orcid.org/0000-0001-7833-7138

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2015 Vol.16 No.8 P.679-693

http://doi.org/10.1631/FITEE.1500054


Flexible resonant tank for a combined converter to achieve an HPS and LED compatible driver


Author(s):  Jin Hu, Hui-pin Lin, Zheng-yu Lu, Feng-wu Zhou

Affiliation(s):  College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   justinhu2008@hotmail.com, linhuipin@126.com, eeluzy@zju.edu.cn

Key Words:  High pressure sodium (HPS), Light emitting diode (LED), Compatible driver, Ballast


Jin Hu, Hui-pin Lin, Zheng-yu Lu, Feng-wu Zhou. Flexible resonant tank for a combined converter to achieve an HPS and LED compatible driver[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(8): 679-693.

@article{title="Flexible resonant tank for a combined converter to achieve an HPS and LED compatible driver",
author="Jin Hu, Hui-pin Lin, Zheng-yu Lu, Feng-wu Zhou",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="8",
pages="679-693",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500054"
}

%0 Journal Article
%T Flexible resonant tank for a combined converter to achieve an HPS and LED compatible driver
%A Jin Hu
%A Hui-pin Lin
%A Zheng-yu Lu
%A Feng-wu Zhou
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 8
%P 679-693
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500054

TY - JOUR
T1 - Flexible resonant tank for a combined converter to achieve an HPS and LED compatible driver
A1 - Jin Hu
A1 - Hui-pin Lin
A1 - Zheng-yu Lu
A1 - Feng-wu Zhou
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 8
SP - 679
EP - 693
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500054


Abstract: 
high pressure sodium (HPS) lamp has been widely used in street lighting applications because of its maturity, reliability, high lighting efficiency, long life-time, and low cost. light emitting diode (LED) is expected as the next generation lighting source due to its continuously improving luminous efficacy, better color characteristic, and super long life-time. The two lighting sources may coexist in street lighting applications for a long time. A novel HPS and LED compatible driver is proposed which is rather suitable and flexible for driving HPS and LED in street lighting applications. The proposed driver combines the LLC and LCC resonant circuits into a flexible resonant tank. The flexible resonant tank may change to LLC or isolated LCC circuit according to the lighting source. It inherits the traditional HPS and LED drivers’ zero voltage switching (ZVS) characteristics and dimmable function. The design of the proposed flexible resonant tank considers the requirements of both HPS and LED. The experiments of driving HPS and LED on a prototype driver show that the driver can drive the two lighting sources flexibly with high efficiency.

Overall it is a good idea and a well written paper. The explanation and analysis of both modes is thorough.

一种基于可变谐振腔的高压钠灯与LED兼容性驱动器

目的:高压钠灯(HPS)由于其成熟性、可靠性、高光效长寿命和低成本的特点广泛应用于道路照明。LED被认为是下一代光源,其光效不断提高,有更好的显色性和超长寿命。这两种光源可能会共同存在很长时间。大规模应用中,需要研发生产大量不同型号镇流器,使用和安装也需要用户学习掌握不同应用知识。工业界里的一种方法是通过设计多功能产品来减少产品类型,简化研发和生产管理,降低应用难度。类似的,对高压钠灯和LED具有兼容性驱动功能的驱动器,也可作为一种选择来适应这种多光源共同应用的情形,使得应用更为便捷。但是由于传统高压钠灯与LED的光源特性以及驱动技术完全不同,研究其兼容性驱动技术将富有挑战性。本文研究这一技术,对解决照明应用的多光源现状具有实用价值,也可作为一种思路启发其他类似应用。
创新点:通过分析用于高压钠灯的LCC谐振腔驱动技术与用于LED的LLC谐振腔驱动技术,结合两者提出一种可变谐振腔用于一种驱动器中来驱动高压钠灯与LED。驱动器根据对光源的检测,采用数字控制技术,可将谐振腔变为LLC或者LCC结构,以适应不同光源的负载特性。该技术保留了传统HPS和LED驱动器的软开关特性以及调光功能,实现了对不同光源的兼容性驱动。
方法:研究高压钠灯镇流器中LCC谐振变换器与LED驱动器中的LLC谐振变换器的拓扑与各种工作阶段,分析它们的共性,提出新的可变谐振腔。并根据两种光源驱动特点,分析谐振腔关键参数与性能参数的关系,给出可变谐振腔的设计方法。本文所提技术用实验方法进行了验证。
结论:本文提出的可变谐振腔可实现对高压钠灯与LED的兼容性驱动,并保留传统驱动技术软开关与调光的特性。这种技术使得适应多光源应用场合的兼容性驱动器成为可能。

关键词:高压钠灯(HPS);发光二极管(LED);兼容性驱动器;镇流器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alonso, J.M., Calleja, A.J., Lopez, E., et al., 2003. Analysis and design of a HID lamp ballast with sinusoidal waveform superposed with 3rd harmonic. IEEE 34th Annual Power Electronics Specialist Conf., p.971-976.

[2]Azevedo, I.L., Morgan, M.G., Morgan, F., 2009. The transition to solid-state lighting. Proc. IEEE, 97(3):481-510.

[3]Cardesin, J., Alonso, J.M., Lopez-Corominas, E., et.al., 2005. Small-signal analysis of a low-cost power control for LCC series-parallel inverters with resonant current mode control for HID lamps. IEEE Trans. Power Electron., 20(5):1205-1212.

[4]Chang, H.S., Lee, B.H., Park, H.N., et al., 2012. Design of dual output LLC resonant converter for a high-power LED lamp. 15th Int. Conf. on Electrical Machines and Systems, p.1-4.

[5]Chen, Y., Wu, X., Qian, Z., et al., 2011. Design and optimization of a wide output voltage range LED driver based on LLC resonant topology. IEEE 8th Int. Conf. on Power Electronics - ECCE Asia, p.2831-2837.

[6]Cheng, C.A., Cheng, H.L., Ku, C.W., et al., 2014. Design and implementation of a single-stage acoustic-resonance-free HID lamp ballast with PFC. IEEE Trans. Power Electron., 29(4):1966-1976.

[7]Cheong, C.K., Cheng, K.W.E., Chan, H.L., 2006. Examination of T8-T5 electronic ballast adaptor. 2nd Int. Conf. on Power Electronics Systems and Applications, p.170-172.

[8]Choi, S.C., Jung, D.Y., Kim, J.H., et al., 2013. Control of multi-functional rapid charger for electric vehicle. IEEE Int. Symp. on Industrial Electronics, p.1-6.

[9]Correa, J., Ponce, M., Arau, J., et al., 2002. Dimming in metal-halide and HPS lamps operating at HF: effects and modeling. 37th IAS Annual Meeting. Conf. Record of the Industry Applications Conf., p.1467-1474.

[10]Costantini, A., Cavalera, G., Pepino, A., et al., 2011. A CMOS low-power SoC for HID and LED lamps ballast. 7th Conf. on Ph.D. Research in Microelectronics and Electronics, p.109-112.

[11]Fang, X., Hu, H., Shen, Z.J., et al., 2012. Operation mode analysis and peak gain approximation of the LLC resonant converter. IEEE Trans. Power Electron., 27(4):1985-1995.

[12]Huang, C.M., Liang, T.J., Lin, R.L., et al., 2007. A novel constant power control circuit for HID electronic ballast. IEEE Trans. Power Electron., 22(5):1573-1582.

[13]IEC, 2006. IEC 61347-2-13:2006. Lamp Control Gear. Part 2-13: Particular Requirements for d.c. or a.c. Supplied Electronic Control Gear for LED Modules.

[14]IEC, 2011. IEC 60662:2011. High-Pressure Sodium Vapour Lamps-Performance Specifications.

[15]Kirsten, A.L., Dalla Costa, M.A., Rech, C., et al., 2013. Digital control strategy for HID lamp electronic ballasts. IEEE Trans. Ind. Electron., 60(2):608-618.

[16]Ko, S.H., Lim, S.H., Lee, S.R., et al., 2007. Operational characteristics of fault current limiting reactor combined with multi-functional invertor. IEEE 7th Int. Conf. on Power Electronics and Drive Systems, p.1719-1723.

[17]Lee, L.M., Hui, S.Y.R., 2009. Automatic lamp detection and operation for warm-start tubular fluorescent lamps. IEEE Trans. Power Electron., 24(12):2933-2941.

[18]Lovasoa, R.F., Zely, R.A., Dorin, L.D., et al., 2012. Energetic aspects of the HID ballast used in the outdoor lighting. Int. Conf. and Exposition on Electrical and Power Engineering, p.340-346.

[19]Lu, B., Liu, W., Liang, Y., et al., 2006. Optimal design methodology for LLC resonant converter. 21st Annual IEEE Applied Power Electronics Conf. and Exposition, p.533-538.

[20]Moksoon, J., Byounglo, L., Chongyeun, P., 2008. An optimal LCC design method for dimmable electronic ballasts of the HID lamp. IEEE Industry Applications Society Annual Meeting, p.1-8.

[21]Mu, H., Geng, L., Liu, J., 2011. A high precision constant current source applied in LED driver. IEEE Symp. on Photonics and Optoelectronics, p.1-4.

[22]Nan, C., Chung, H.S.H., 2011. A driving technology for retrofit LED lamp for fluorescent lighting fixtures with electronic ballasts. IEEE Trans. Power Electron., 26(2):588-601.

[23]Rodrigues, C., Guedes, L., Rodrigues, M., et al., 2009. Single electronic ballast for HPS and HPMV lamp testing. IEEE Power Electronics Conf., p.586-592.

[24]Schnell, R.W., Zane, R.A., Azcondo, F.J., 2013. Size reduction in low-frequency square-wave ballasts for high-intensity discharge lamps using soft-saturation magnetic material and digital control techniques. IEEE Trans. Power Electron., 28(2):1036-1046.

[25]Shrivastava, A., Singh, B., 2012. LLC series resonant converter based LED lamp driver with ZVS. IEEE 5th Power India Conf., p.1-5.

[26]Steigerwald, R.L., 1988. A comparison of half-bridge resonant converter topologies. IEEE Trans. Power Electron., 3(2):174-182.

[27]STMicroelectronics, 2015a. AN2708: 2X36 W Digital Dimmable Ballast with L6574 and ST7FDALI. Available from http://www.st.com/web/en/resource/technical/document/application_note/CD00184169.pdf [Accessed on Feb. 6, 2015].

[28]STMicroelectronics, 2015b. AN3106: 48 V-130 W High-Efficiency Converter with PFC for LED Street Lighting Applications. Available from http://www.st.com/web/en/resource/technical/document/application_note/CD00256070.pdf [Accessed on Feb. 6, 2015].

[29]Tan, S.C., 2010. General level driving approach for improving electrical-to-optical energy-conversion efficiency of fast-response saturable lighting devices. IEEE Trans. Ind. Electron., 57(4):1342-1353.

[30]Tomoroga, M., Jivet, I., Nicoara, D., 2012. Intelligent tele-management of street lighting equipped with HID lamps. 10th Int. Symp. on Electronics and Telecommunications, p.7-10.

[31]Visconti, P., Zizzari, G., Romanello, D., et al., 2011. Electronic board for driving of HID and LED lamps with auxiliary power supply from solar panel and presence detector. 10th Int. Conf. on Environment and Electrical Engineering, p.1-4.

[32]Wang, H., Liu, Z., Dong, J., 2011. High-power LED constant-current driver circuit design and efficiency analysis. Proc. IEEE Cross Strait Quad-Regional Radio Science and Wireless Technology Conf., p.705-710.

[33]Wang, Y., Zhang, X., Xu, D., et al., 2011. Design optimisation of the LCsCp resonant inverter to drive 1 kW high-pressure sodium lamps. IET Power Electron., 4(4):374-383.

[34]Wei, Y., Hui, S.Y.R., Chung, H.S.H., 2009. Energy saving of large-scale high-intensity-discharge lamp lighting networks using a central reactive power control system. IEEE Trans. Ind. Electron., 56(8):3069-3078.

[35]Wu, H., Ji, S., Lee, F.C., et al., 2011. Multi-channel constant current (MC 3) LLC resonant LED driver. IEEE Energy Conversion Congress and Exposition, p.2568-2575.

[36]Zhao, B., Song, Q., Liu, W., et al., 2013. Next-generation multi-functional modular intelligent UPS system for smart grid. IEEE Trans. Ind. Electron., 60(9):3602-3618.

[37]Zhu, J., Zhuo, F., Wang, Z., 2009. Design of a digital controller for high frequency HID lamp ballast. IEEE 6th Int. Power Electronics and Motion Control Conf., p.2516-2520.

[38]Zotos, N., Stergiopoulos, C., Anastasopoulos, K., et al., 2012. Case study of a dimmable outdoor lighting system with intelligent management and remote control. IEEE Int. Conf. on Telecommunications and Multimedia, p.43-48.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE