Full Text:   <2791>

Summary:  <1810>

CLC number: TP312

On-line Access: 2016-02-02

Received: 2015-05-25

Revision Accepted: 2015-08-24

Crosschecked: 2015-11-24

Cited: 2

Clicked: 6774

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xin Li

http://orcid.org/0000-0002-4859-2477

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.2 P.160-172

http://doi.org/10.1631/FITEE.1500168


An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations


Author(s):  Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian

Affiliation(s):  1Technology Innovation Center, Jiangsu Academy of Safety Science and Technology, Nanjing 210042, China; more

Corresponding email(s):   lin65002@hotmail.com

Key Words:  Parameter variations, Parametric yield, Multi-objective optimization, Chebyshev affine, Adaptive weighted sum


Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(2): 160-172.

@article{title="An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations",
author="Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="2",
pages="160-172",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500168"
}

%0 Journal Article
%T An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations
%A Xin Li
%A Jin Sun
%A Fu Xiao
%A Jiang-shan Tian
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 2
%P 160-172
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500168

TY - JOUR
T1 - An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations
A1 - Xin Li
A1 - Jin Sun
A1 - Fu Xiao
A1 - Jiang-shan Tian
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 2
SP - 160
EP - 172
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500168


Abstract: 
With shrinking technology, the increase in variability of process, voltage, and temperature (PVT) parameters significantly impacts the yield analysis and optimization for chip designs. Previous yield estimation algorithms have been limited to predicting either timing or power yield. However, neglecting the correlation between power and delay will result in significant yield loss. Most of these approaches also suffer from high computational complexity and long runtime. We suggest a novel bi-objective optimization framework based on chebyshev affine arithmetic (CAA) and the adaptive weighted sum (AWS) method. Both power and timing yield are set as objective functions in this framework. The two objectives are optimized simultaneously to maintain the correlation between them. The proposed method first predicts the guaranteed probability bounds for leakage and delay distributions under the assumption of arbitrary correlations. Then a power-delay bi-objective optimization model is formulated by computation of cumulative distribution function (CDF) bounds. Finally, the AWS method is applied for power-delay optimization to generate a well-distributed set of Pareto-optimal solutions. Experimental results on ISCAS benchmark circuits show that the proposed bi-objective framework is capable of providing sufficient trade-off information between power and timing yield.

The article looks fine.

一种基于参数扰动的芯片成品率双目标优化框架

目的:基于工艺参数扰动及环境参数扰动,实现对芯片漏电功耗成品率及芯片时延成品率的双目标优化,得到分布均匀的帕累托优化解集。
创新点:考虑分布不确定的工艺参数扰动及环境参数扰动,在任意相关性下利用CAA理论对漏电功耗成品率及芯片时延成品率进行有效估算,降低计算复杂度,并根据AWS方法对漏电功耗成品率及芯片时延成品率同时进行优化,取得了分布均匀的优化解,便于设计人员灵活选择优化解。
方法:首先,考虑工艺参数及环境参数的扰动不确定性,提出一种能够处理任意相关性的漏电功耗及芯片时延概率分布边界估算方法。然后,通过计算累积分布边界构造功耗-时延成品率双目标优化模型。最后,利用AWS方法同时优化漏电功耗成品率及芯片时延成品率,得到一组分布均匀的帕累托优化解,进而提供漏电功耗成品率与芯片时延成品率间的均衡优化信息。
结论:针对工艺参数及环境参数的扰动不确定性,提出了一种能够处理任意相关性的芯片成品率双目标优化算法,得到了一组分布均匀的帕累托优化解。

关键词:参数扰动;参数成品率;多目标优化;切比雪夫仿射;自适应加权求和

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Banerjee, A., Chatterjee, A., 2015. Signature driven hierarchical post-manufacture tuning of RF systems for performance and power. IEEE Trans. VLSI Syst., 23(2):342-355.

[2]de Figueiredo, L.H., Stolfi, J., 2004. Affine arithmetic: concepts and applications. Numer. Algor., 37(1):147-158.

[3]Gong, F., Yu, H., He, L., 2011. Stochastic analog circuit behavior modeling by point estimation method. Proc. Int. Symp. on Physical Design, p.175-182.

[4]Guerra-Gómez, I., Tlelo-Cuautle, E., de la Fraga, L., 2013. Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits. Appl. Math. Comput., 222:167-176.

[5]Guerra-Gómez, I., Tlelo-Cuautle, E., de la Fraga, L., 2015. OCBA in the yield optimization of analog integrated circuits by evolutionary algorithms. IEEE Int. Symp. on Circuits & Systems, p.1933-1936.

[6]Hwang, E.J., Kim, W., Kim, Y.H., 2013. Timing yield slack for timing yield-constrained optimization and its application to statistical leakage minimization. IEEE Trans. VLSI Syst., 21(10):1783-1796.

[7]Kanj, R., Joshi, R., Nassif, S., 2010. Statistical leakage modeling for accurate yield analysis the CDF matching method and its alternatives. ACM/IEEE Int. Symp. on Low-Power Electronics and Design, p.337-342.

[8]Kashfi, F., Hatami, S., Pedram, M., 2011. Multi-objective optimization techniques for VLSI circuits. 12th Int. Symp. on Quality Electronic Design, p.156-163.

[9]Kim, I.Y., de Weck, O.L., 2005. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Struct. Multidiscipl. Optim., 29(2):149-158.

[10]Li, H., Lian, J., 2008. Multi-objective optimization of water-sedimentation-power in reservoir based on Pareto- optimal solution. Trans. Tianjin Univ., 14(4):282-288.

[11]Liu, X.X., Tan, S.X.D., Palma-Rodriguez, A.A., et al., 2013. Performance bound analysis of analog circuits in frequency- and time-domain considering process variations. ACM Trans. Des. Autom. Electron. Syst., 19(1):1-22.

[12]Lourenço, N., Horta, N., 2012. GENOM-POF: multi-objective evolutionary synthesis of analog ICs with corners validation. Proc. 14th Int. Conf. on Genetic and Evolutionary Computation, p.1119-1126.

[13]Mande, S.S., Chandorkar, A.N., Iwai, H., 2013. Computationally efficient methodology for statistical characterization and yield estimation due to inter- and intra-die process variations. 5th Asia Symp. on Quality Electronic Design, p.287-294.

[14]Mani, M., Devgan, A., Orshansky, M., 2005. An efficient algorithm for statistical minimization of total power under timing yield constraints. Proc. Design Automation Conf., p.309-314.

[15]Mani, M., Devgan, A., Orshansky, M., et al., 2007. A statistical algorithm for power- and timing-limited parametric yield optimization of large integrated circuits. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst., 26(10):1790-1802.

[16]Orshansky, M., Bandyopadhyay, A., 2004. Fast statistical timing analysis handling arbitrary delay correlations. Proc. 41st Annual Design Automation Conf., p.337-342.

[17]Radfar, M., Singh, J., 2014. A yield improvement technique in severe process, voltage, and temperature variations and extreme voltage scaling. Microelectron. Reliab., 54(12):2813-2823.

[18]Rao, R., Devgan, A., Blaauw, D., et al., 2004a. Parametric yield estimation considering leakage variability. Proc. 41st Annual Design Automation Conf., p.442-447.

[19]Rao, R., Srivastava, A., Blaauw, D., et al., 2004b. Statistical analysis of subthreshold leakage current for VLSI circuits. IEEE Trans. VLSI Syst., 12(2):131-139.

[20]Saad, A., Frühwirth, T., Gervet, C., 2014. The p-box CDF-intervals: a reliable constraint reasoning with quantifiable information. Theory Pract. Log. Programm., 14(4-5):461-475.

[21]Sheng, Y., Xu, K., Wang, D., et al., 2013. Performance analysis of FET microwave devices by use of extended spectral-element time-domain method. Int. J. Electron., 100(5):699-717.

[22]Srinivas, N., Deb, K., 1994. Multi-objective optimization using non-dominated sorting in genetic algorithms. Evol. Comput., 2(3):221-248.

[23]Srivastava, A., Chopra, K., Shah, S., et al., 2008. A novel approach to perform gate-level yield analysis and optimization considering correlated variations in power and performance. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst., 27(2):272-285.

[24]Sun, J., Huang, Y., Li, J., et al., 2008. Chebyshev affine arithmetic based parametric yield prediction under limited descriptions of uncertainty. Proc. Asia and South Pacific Design Automation Conf., p.531-536.

[25]Ukhov, I., Eles, P., Peng, Z., 2014. Probabilistic analysis of power and temperature under process variation for electronic system design. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst., 33(6):931-944.

[26]Visweswariah, C., 2003. Death, taxes and falling chips. Proc. Design Automation Conf., p.343-347.

[27]Wang, W.S., Orshansky, M., 2006. Robust estimation of parametric yield under limited descriptions of uncertainty. Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, p.884-890.

[28]Williamson, R.C., Downs, T., 1990. Probabilistic arithmetic. I. numerical methods for calculating convolutions and dependency bounds. Int. J. Approx. Reason., 4(2):89-158.

[29]Xie, L., Davoodi, A., 2008. Robust estimation of timing yield with partial statistical information on process variations. 9th Int. Symp. on Quality Electronic Design, p.156-161.

[30]Zhu, W., Wu, Z., 2014. The stochastic ordering of mean- preserving transformations and its applications. Eur. J. Oper. Res., 239(3):802-809.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE