Full Text:   <740>

Summary:  <341>

CLC number: O441.5

On-line Access: 2016-02-02

Received: 2015-07-07

Revision Accepted: 2015-11-23

Crosschecked: 2016-01-06

Cited: 0

Clicked: 1669

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yin Zhao

http://orcid.org/0000-0002-6300-5939

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.2 P.173-184

http://doi.org/10.1631/FITEE.1500212


An analysis in metal barcode label design for reference


Author(s):  Yin Zhao, Hong-guang Xu, Qin-yu Zhang

Affiliation(s):  Communication Engineering Research Center, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China

Corresponding email(s):   zhaoyin214@qq.com, zqy@hit.edu.cn

Key Words:  Metal barcode label, Signal detection, AC field measurement, Internet of things


Share this article to: More <<< Previous Article|

Yin Zhao, Hong-guang Xu, Qin-yu Zhang. An analysis in metal barcode label design for reference[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(2): 173-184.

@article{title="An analysis in metal barcode label design for reference",
author="Yin Zhao, Hong-guang Xu, Qin-yu Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="2",
pages="173-184",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500212"
}

%0 Journal Article
%T An analysis in metal barcode label design for reference
%A Yin Zhao
%A Hong-guang Xu
%A Qin-yu Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 2
%P 173-184
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500212

TY - JOUR
T1 - An analysis in metal barcode label design for reference
A1 - Yin Zhao
A1 - Hong-guang Xu
A1 - Qin-yu Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 2
SP - 173
EP - 184
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500212


Abstract: 
We employ nondestructive evaluation involving AC field measurement in detecting and identifying metal barcode labels, providing a reference for design. Using the magnetic scalar potential boundary condition at notches in thin-skin field theory and 2D Fourier transform, we introduce an analytical model for the magnetic scalar potential induced by the interaction of a high-frequency inducer with a metal barcode label containing multiple narrow saw-cut notches, and then calculate the magnetic field in the free space above the metal barcode label. With the simulations of the magnetic field, qualitative analysis is given for the effects on detecting and identifying metal barcode labels, which are caused by metal material, notch characteristics, exciting inducer properties, and other factors that can be used in metal barcode label design as reference. Simulation results are in good accordance with experiment results.

This paper introduces an analytical technique for the magnetic scalar potential induced by the interaction of high frequency inducer with a metal barcode label containing multiple narrow saw-cut notches. The analytical technique is potentially interesting.

金属条码标签设计参考中的解析分析

目的:为金属条码标签设计提供参考依据,以实现在工业、军事等恶劣环境下,物品信息的长期保存及自动提取。
创新点:将无损探伤中交流场测量技术应用于金属条码标签的检测识别,从而克服了金属条码标签抗污损能力差的缺点。
方法:将无损探伤中交流场测量技术应用于金属标签的检测识别中。利用薄膜场理论中刻痕处磁标位势的边界方程和二维傅立叶变换,给出高频线圈激励多刻痕金属标签条件下,金属标签上方空间中磁标位势的解析解,并给出磁场强度分布。通过对空间磁场强度的仿真,定性分析金属标签基底材质、刻痕和激励线圈属性等因素对金属标签识别的影响,为金属标签的设计提供参考。
结论:金属标签基底材质、刻痕和激励线圈属性等因素对金属标签检测识别的分辨能力影响为:(1)ACFM在精确定位刻痕时应选择幅度检测的方式;(2)金属标签基底材料应选择相对磁导率较大的金属;(3)刻痕的位置应尽量靠近激励线圈的中心区域;(4)刻痕深度选择4-8 mm为宜;(5)相比于圆形激励线圈,菱形激励线圈可以提高对刻痕的分辨能力;(6)相比于大尺寸激励线圈,小尺寸激励线圈可以提高对刻痕的分辨能力;(7)相比于小尺寸激励线圈,大尺寸激励线圈可以扩大可分辨区间;(8)通过提高激励频率,可提高ACFM检测过程中抗噪声干扰的能力。

关键词:金属标签;薄膜场;交流场测量;物联网

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Amineh, R.K., Ravan, M., Sadeghi, S.H.H., et al., 2008. Using AC field measurement data at an arbitrary liftoff distance to size long surface-breaking cracks in ferrous metals. NDT & E Int., 41(3):169-177.

[2]Auld, B.A., Moulder, J.C., 1999. Review of advances in quantitative eddy current nondestructive evaluation. J. Nondestruct. Eval., 18(1):3-36.

[3]Bowler, J.R., 1994. Eddy-current interaction with an ideal crack. I. the forward problem. J. Appl. Phys., 75(12): 8128-8137.

[4]Bowler, J.R., Harfield, N., 1998. Evaluation of probe impedance due to thin-skin eddy-current interaction with surface cracks. IEEE Trans. Magnet., 34(2):515-523.

[5]Bowler, J.R., Sabbagh, L., Sabbagh, H., 1989. A theoretical and computational model of eddy-current probes incorporating volume integral and conjugate gradient methods. IEEE Trans. Magnet., 25(3):2650-2664.

[6]Bowler, J.R., Sabbagh, L.D., Sabbagh, H.A., 1990. Eddy-current probe impedance due to a surface slot in a conductor. IEEE Trans. Magnet., 26(2):889-892.

[7]Bowler, J.R., Theodoulidis, T.P., Poulakis, N., 2012. Eddy current probe signals due to a crack at a right-angled corner. IEEE Trans. Magnet., 48(12):4735-4746.

[8]Ditchburn, R.J., Burke, S.K., Posada, M., 2003. Eddy-current nondestructive inspection with thin spiral coils: long cracks in steel. J. Nondestruct. Eval., 22(2):63-77.

[9]Dodd, C.V., Deeds, W.E., 1968. Analytical solutions to eddy-current probe-coil problems. J. Appl. Phys., 39:2829-2838.

[10]French, P.C., Bond, L.J., 1988. Finite-element modeling of eddy-current nondestructive evaluation (NDE). J. Nondestruct. Eval., 7(1):55-69.

[11]Grimberg, R., 2011. Electromagnetic nondestructive evaluation: present and future. Stroj. vestn. J. Mech. Eng., 57(3):204-217.

[12]Lewis, A.M., Michael, D.H., Lugg, M.C., et al., 1988. Thin-skin electromagnetic fields around surface-breaking cracks in metals. J. Appl. Phys., 64:3777-3784.

[13]Michael, D.H., Waechter, R.T., Collins, R., 1982. The measurement of surface cracks in metals by using AC electric fields. Proc. R. Soc. Lond. A, 381(1780):139-157.

[14]Michael, D.H., Lewis, A.M., McIver, M., et al., 1991. Thin-skin electromagnetic fields in the neighbourhood of surface-breaking cracks in metals. Proc. R. Soc. Lond. A, 434(1892):587-603.

[15]Mirshekar-Syahkal, D., Mostafavi, R.F., 1997. Analysis technique for interaction of high-frequency rhombic inducer field with cracks in metals. IEEE Trans. Magnet., 33(3):2291-2298.

[16]Morisue, T., 1982. Magnetic vector potential and electric scalar potential in three-dimensional eddy current problem. IEEE Trans. Magnet., 18(2):531-535.

[17]Mostafavi, R.F., Mirshekar-Syahkal, D., 1999. AC fields around short cracks in metals induced by rectangular coils. IEEE Trans. Magnet., 35(3):2001-2006.

[18]Ostovarzadeh, M.H., Sadeghi, S.H.H., Moini, R., 2011. Field distributions around a long opening in a metallic half space excited by arbitrary-frequency alternating current-carrying wires of arbitrary shape. IEEE Trans. Magnet., 47(11):4600-4610.

[19]Ostovarzadeh, M.H., Sadeghi, S.H.H., Moini, R., et al., 2013. Field distributions around a rectangular crack in a metallic half-space excited by long current-carrying wires with arbitrary frequency. IEEE Trans. Magnet., 49(3):1108-1118.

[20]Presser, M., Barnaghi, P.M., Eurich, M., et al., 2009. The SENSEI project: integrating the physical world with the digital world of the network of the future. IEEE Commun. Mag., 47(4):1-4.

[21]Ravan, M., Sadeghi, S.H.H., Moini, R., 2006. Field distributions around arbitrary shape surface cracks in metals, induced by high-frequency alternating-current-carrying wires of arbitrary shape. IEEE Trans. Magnet., 42(9): 2208-2214.

[22]Salemi, A.H., Sadeghi, S.H.H., Moini, R., 2004. Thin-skin analysis technique for interaction of arbitrary-shape inducer field with long cracks in ferromagnetic metals. NDT & E Int., 37(6):471-479.

[23]Theodoulidis, T., Bowler, J., 2005. Eddy-current interaction of a long coil with a slot in a conductive plate. IEEE Trans. Magnet., 41(4):1238-1247.

[24]Theodoulidis, T., Bowler, J.R., 2010. Interaction of an eddy-current coil with a right-angled conductive wedge. IEEE Trans. Magnet., 46(4):1034-1042.

[25]Tian, G.Y., Sophian, A., 2005. Reduction of lift-off effects for pulsed eddy current NDT. NDT & E Int., 38(4):319-324.

[26]Tian, G.Y., Zhao, Z.X., Baines, R.W., 1998. The research of inhomogeneity in eddy current sensors. Sens. Actuat. A, 69(2):148-151.

[27]Xu, E.X., Simkin, J., 2004. Total and reduced magnetic vector potentials and electrical scalar potential for eddy current calculation. IEEE Trans. Magnet., 40(2):938-940.

[28]Zeng, Z.W., Liu, X., Deng, Y.M., et al., 2007. Reduced magnetic vector potential and electric scalar potential formulation for eddy current modeling. Przegl. Elektrotechn., 83(6):35-37.

[29]Zeng, Z.W., Udpa, L., Udpa, S.S., 2010. Finite-element model for simulation of ferrite-core eddy-current probe. IEEE Trans. Magnet., 46(3):905-909.

[30]Zhou, J., Lugg, M.C., Collins, R., 1999. A non-uniform model for alternating current field measurement of fatigue cracks in metals. Int. J. Appl. Electrom. Mech., 10(3):221-235.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE