Full Text:   <1440>

CLC number: O441

On-line Access: 

Received: 2005-11-12

Revision Accepted: 2005-11-28

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3306

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.1 P.55~70

http://doi.org/10.1631/jzus.2006.A0055


Numerical analysis of surface plasmons excited on a thin metal grating


Author(s):  Okuno Yoichi, Suyama Taikei

Affiliation(s):  Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; more

Corresponding email(s):   okuno@gpo.kumamoto-u.ac.jp

Key Words:  Thin metal grating, Plasmon modes, Resonance absorption, Numerical analysis


Okuno Yoichi, Suyama Taikei. Numerical analysis of surface plasmons excited on a thin metal grating[J]. Journal of Zhejiang University Science A, 2006, 7(1): 55~70.

@article{title="Numerical analysis of surface plasmons excited on a thin metal grating",
author="Okuno Yoichi, Suyama Taikei",
journal="Journal of Zhejiang University Science A",
volume="7",
number="1",
pages="55~70",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0055"
}

%0 Journal Article
%T Numerical analysis of surface plasmons excited on a thin metal grating
%A Okuno Yoichi
%A Suyama Taikei
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 1
%P 55~70
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0055

TY - JOUR
T1 - Numerical analysis of surface plasmons excited on a thin metal grating
A1 - Okuno Yoichi
A1 - Suyama Taikei
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 1
SP - 55
EP - 70
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0055


Abstract: 
The authors numerically investigated the characteristics of surface plasmons excited on a thin metal grating placed in planer or conical mounting. After formulating the problem, the solution method, Yasuura’s method (a modal expansion approach with least-squares boundary matching) was described. Although the grating is periodic in one direction, coupling between TE and TM waves occurs because arbitrary incidence is assumed. This requires the employment of both TE and TM vector modal functions in the analysis. Numerical computations showed: (1) the excitation of surface plasmons with total or partial absorption of incident light; (2) the resonance character of the coefficient of an evanescent order that couples the plasmon surface wave; (3) the field profile and Poynting’s vector. The plasmons excited on the surfaces of a thin metal grating are classified into three types: SISP, SRSP, and LRSP, different from each other in the feature of field profile and energy flow. In addition, the eigenvalue of a plasmon mode was obtained by solving a sequence of diffraction problems with complex-valued angles of incidence and using the quasi-Newton algorithm to predict the real angle of incidence at which the absorption occurs.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Bryan-Brown, G.P., Sambles, J.R., Hutley, M.C., 1990. Polarization conversion through the excitation of surface plasmons on a metallic grating. J. Modern Optics, 37(7):227-232.

[2] Hass, G., Hadley, L., 1963. Optical Properties of Metals. In: Gray, D.E.(Ed.), American Institute of Physics Handbook (2nd Ed.). McGraw-Hill, New York, p.6-107.

[3] Lawson, C.L., Hanson, R.J., 1974. Solving Least-Squares Problems. Prentice-Hall, Englewood Cliffs, NJ.

[4] Matsuda, T., Zhou, D., Okuno, Y., 1999. Numerical analysis of TE-TM mode conversion in a metal grating placed in conical mounting. Trans. IEICE Jpn. Electron., J82-C-I(2):42-49.

[5] Neviere, M., 1980. The Homogeneous Problem. In: Petit, R. (Ed.), Electromagnetic Theory of Gratings. Springer-Verlag, Berlin, p.123-157.

[6] Okuno, Y., 1990. Mode-matching Method. In: Yamashita, E. (Ed.), Analysis Methods for Electromagnetic Wave Problems. Artech House, Boston, p.107-138.

[7] Raeter, H., 1982. Surface Plasmon and Roughness. In: Agranovich, V.M., Mills, D.L.(Eds.), Surface Polaritons. North-Holland, New York, p.331-403.

[8] Yasuura, K., 1971. A View of Numerical Methods in Diffraction Problems. In: Tilson, W.V., Sauzade, M.(Eds.), Progress in Radio Science 1966–1969. URSI, Brussels, p.257-270.

[9] Yasuura, K., Itakura, T., 1965. Approximation method for wave functions (I). Kyushu Univ. Tech. Rep., 38(1):72-77.

[10] Yasuura, K., Itakura, T., 1966a. Approximation method for wave functions (II). Kyushu Univ. Tech. Rep., 38(4):378-385.

[11] Yasuura, K., Itakura, T., 1966b. Approximation method for wave functions (III). Kyushu Univ. Tech. Rep., 39(1):51-56.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE