CLC number: O441; TN204
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5128
Wu Li-jun, Mazilu M., Gallet J.F., Krauss T.F.. Beam steering in planar photonic crystal based on its anomalous dispersive properties[J]. Journal of Zhejiang University Science A, 2006, 7(1): 45-54.
@article{title="Beam steering in planar photonic crystal based on its anomalous dispersive properties",
author="Wu Li-jun, Mazilu M., Gallet J.F., Krauss T.F.",
journal="Journal of Zhejiang University Science A",
volume="7",
number="1",
pages="45-54",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0045"
}
%0 Journal Article
%T Beam steering in planar photonic crystal based on its anomalous dispersive properties
%A Wu Li-jun
%A Mazilu M.
%A Gallet J.F.
%A Krauss T.F.
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 1
%P 45-54
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0045
TY - JOUR
T1 - Beam steering in planar photonic crystal based on its anomalous dispersive properties
A1 - Wu Li-jun
A1 - Mazilu M.
A1 - Gallet J.F.
A1 - Krauss T.F.
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 1
SP - 45
EP - 54
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0045
Abstract: We utilize the anomalous dispersion of planar photonic crystals near the dielectric band edge to control the wavelength-dependent propagation of light. We typically observe an angular swing of up to 10° as the input wavelength is changed from 1290 nm to 1310 nm, which signifies an angular dispersion of 0.5°/nm (“superprism” phenomenon). Such a strong angular dispersion is of the order required for WDM systems. By tuning the incident angle, light beams with up to 20° divergence were collimated over a 25 nm (1285 nm to 1310 nm) bandwidth using a triangular lattice (“supercollimator” phenomenon). The wavelength collimating range can be extended from 25 nm to 40 nm by changing the lattice from triangular to square. These two devices can be realized in the same configuration, simply by tuning the wavelength. Sources of loss are discussed.
[1] Baba, T., Ohsaki, D., 2001. Interfaces of photonic crystals for high efficiency light transmission. Jpn. J. Appl. Phys., 40:5920-5924, Part 1.
[2] Baba, T., Nakamura, M., 2002. Photonic crystal light deflection devices using the superprism effect. IEEE J. Quan. Electron., 38:908-914.
[3] Jugessur, A.S., Bakhtazad, A., Wu, L., Kirk, A., Krauss, T.F., de la Rue, R.M., 2005. A compact and integrated 2-D photonic crystal superprism filter-device for wavelength demultiplexing applications. Submitted.
[4] Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., 1998. Superprism phenomena in photonic crystals. Phys. Rev. B, 58: R10096-R10099.
[5] Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., 1999a. Superprism phenomena in photonic crystals: Toward microscale lightwave circuits. J. Lightwar Technol., 17:2032-2038.
[6] Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., 1999b. Self-collimating phenomena in photonic crystals. Appl. Phys. Lett., 74:1212-1214.
[7] Kosaka, H., Kawashima, T., Tomita, A., Sato, T., Kawakami, S., 2000. Photonic-crystal spot-size converter. Appl. Phys. Lett., 76:268-270.
[8] Krauss, T.F., de la Rue, R.M., Brand, S., 1996. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature, 383:699-702.
[9] Notomi, M., 2000. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behaviour in the vicinity of the photonic band gap. Phys. Rev. B, 62:10696-10705.
[10] Witzens, J., Loncar, M., Acherer, A., 2002. Self-collimation in planar photonic crystals. IEEE J. Selected Topics in Quantum Electron., 8:1246-1257.
[11] Witzens, J., Baehr-Jones, T., Scherer, A., 2005. Hybrid superprism with low insertion losses and suppressed cross-talk. Phys. Rev. E, 71:026604.
[12] Wu, L., Mazilu, M., Karle, T., Krauss, T.F., 2002. Superprism phenomena in planar photonic crystals. IEEE J. Quan. Electron., 38:915-918.
[13] Wu, L., Mazilu, M., Krauss, T.F., 2003a. Beam steering in planar-photonic crystals: From superprism to supercollimator. J. Lightwave Tech., 21:561-566.
[14] Wu, L., Mazilu, M., Gallet, J.F., Krauss, T.F., 2003b. Square lattice photonic-crystal collimator. Photonics and Nano-structures–Fundamentals and Applications, 1:31-36.
Open peer comments: Debate/Discuss/Question/Opinion
<1>