Full Text:   <962>

Summary:  <486>

CLC number: TP202

On-line Access: 2019-06-28

Received: 2018-11-21

Revision Accepted: 2019-05-09

Crosschecked: 2020-02-19

Cited: 0

Clicked: 2394

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yu-jia Zang

https://orcid.org/0000-0002-2712-9854

Yan-hu Chen

https://orcid.org/0000-0002-5020-7355

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.4 P.604-614

http://doi.org/10.1631/FITEE.1800737


A new approach for analyzing the effect of non-ideal power supply on a constant current underwater cabled system


Author(s): 

Affiliation(s): 

Corresponding email(s): 

Key Words:  Non-ideal power supply, Constant current input, Ocean observation system


sorry,no result found

sorry,no result found

sorry,no result found

sorry,no result found


Abstract: 
The effect of a constant current (CC) power supply on the CC ocean observation system is a problem that once was neglected. The dynamic characteristics of the CC power supply may have great influence on the whole system, especially the voltage behavior in the event of load change. This needs to be examined. In this paper, a method is introduced to check whether the CC power supply can satisfy the dynamic requirements of the CC ocean observation system. An equivalent model to describe the non-ideal CC power supply is presented, through which the dynamic characteristics can be standardized. To verify the feasibility of this model, a minimum system of a single node in the CC ocean observation system is constructed, from which the model is derived. Focusing on the power failure problem, the output voltage responses are performed and the models are validated. Through the model, the dynamic behavior of the CC power supply is checked in a practical design.

一种针对非理想电源对水下恒流缆系统影响的分析方法


臧玉嘉,陈燕虎,杨灿军,李德骏,陈泽健,Gul MUHAMMAD
浙江大学流体动力与机电系统国家重点实验室,中国杭州市,310027

摘要:在过去,非理想恒流电源对恒流海洋观测系统的影响是一个被忽视的问题。事实上,恒流电源的动态特性对整个系统,特别是对负载变化时的动态响应有很大影响。因此,在实际工程应用中有必要对非理想恒流电源进行校核。本文介绍一种校核非理想恒流电源是否满足水下恒流缆系统动态特性的方法,并提出一种描述非理想恒流电源的等效模型。通过该模型,可规范恒流电源动态特性的技术指标。首先,构造恒流海洋观测网络系统中单节点的最小系统,并推导其数学模型。其次,针对系统可能存在的掉电问题,分析对系统的输出电压响应,并验证所提模型。最后,采用所提模型校核实际应用中的恒流电源动态特性。

关键词:非理想恒流电源;恒流输入;海洋观测系统

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alonge F, Pucci M, Rabbeni R, et al., 2017. Dynamic modelling of a quadratic DC/DC single-switch boost converter. Electr Power Syst Res, 152:130-139.

[2]Asakawa K, Kojima J, Muramatsu J, et al., 2003. Novel current to current converter for mesh-like scientific underwater cable network-concept and preliminary test result. Proc Oceans. Celebrating the Past ... Teaming Toward the Future, p.1868-1873.

[3]Asakawa K, Kojima J, Muramatsu J, et al., 2007. Current- to-current converter for scientific underwater cable networks. IEEE J Ocean Eng, 32(3):584-592.

[4]Chave AD, Waterworth G, Maffei AR, et al., 2004. Cabled ocean observatory systems. Mar Technol Soc J, 38(2): 30-43.

[5]Chen YH, Yang CJ, Li DJ, et al., 2012. Design and application of a junction box for cabled ocean observatories. Mar Technol Soc J, 46(3):50-63.

[6]Chen YH, Yang CJ, Li DJ, et al., 2013. Study on 10 KVDC powered junction box for a cabled ocean observatory system. China Ocean Eng, 27(2):265-275.

[7]Cruz J, Castilla M, Miret J, et al., 2004. Averaged large-signal model of single magnetic push-pull forward converter with built-in input filter. Proc IEEE Int Symp on Industrial Electronics, p.1023-1028.

[8]Duennebier FK, Harris DW, Jolly J, et al., 2002. Hugo: the Hawaii undersea geo-observatory. IEEE J Ocean Eng, 27 (2):218-227.

[9]Florez-Tapia AM, Ibanez FM, Vadillo J, et al., 2017. Small signal modeling and transient analysis of a trans quasi-Z-source inverter. Electric Power Syst Res, 144:52-62.

[10]Harris DW, Duennebier FK, 2002. Powering cabled ocean- bottom observatories. IEEE J Ocean Eng, 27(2): 202-211.

[11]Howe BM, Kirkham H, Vorpérian V, 2002. Power system considerations for undersea observatories. IEEE J Ocean Eng, 27(2):267-274.

[12]Howe BM, Lukas R, Duennebier F, et al., 2011. ALOHA cabled observatory installation. Proc Oceans MTS/ IEEE KONA, p.1-11.

[13]Huang WX, Abu Qahouq JA, 2017. Small-signal modeling and controller design of energy sharing controlled distributed battery system. Simul Model Pract Theory, 77:1-19.

[14]Lai RS, Ngo KDT, Watson JK, 1992. Steady-state analysis of the symmetrical push-pull power converter employing a matrix transformer. IEEE Trans Power Electron, 7(1):44-53.

[15]Lourdusami SS, Vairamani R, 2014. Analysis, design and experimentation of series-parallel LCC resonant converter for constant current source. IEICE Electr Expr, 11(17):20140711.

[16]Pawlak G, de Carlo EH, Fram JP, et al., 2009. Development, deployment, and operation of Kilo Nalu nearshore cabled observatory. Proc OCEANS-EUROPE, p.1-10.

[17]Petitt RA, Harris DW, Wooding B, et al., 2002. The Hawaii-2 observatory. IEEE J Ocean Eng, 27(2):245-253.

[18]Qu FZ, Wang ZD, Song H, et al., 2015a. A study on a cabled seafloor observatory. IEEE Intell Syst, 30(1):66-69.

[19]Takehira K, 2016. Submarine system powering. In: Chesnoy J, Undersea Fiber Communication Systems (2nd). Academic Press, London, p.381-402.

[20]Tannir D, Wang Y, Li P, 2016. Accurate modeling of nonideal low-power PWM DC–DC converters operating in CCM and DCM using enhanced circuit-averaging techniques. ACM Trans Des Autom ElectrSyst, 21(4):61.

[21]Taylor SM, 2008. Supporting the operations of the NEPTUNE Canada and VENUS cabled ocean observatories. Proc OCEANS MTS/IEEE Kobe Techno-Ocean, p.1-8.

[22]Trujillo CL, Velasco D, Figueres E, et al., 2011. Modeling and control of a push-pull converter for photovoltaic microinverters operating in island mode. Appl Energy, 88(8):2824-2834.

[23]Wang HJ, Saha T, Zane R, 2017a. Analysis and design of a series resonant converter with constant current input and regulated output current. Proc IEEE Applied Power Electronics Conf and Exposition, p.1741-1747.

[24]Wang HJ, Saha T, Zane R, 2017b. Impedance-based stability analysis and design considerations for DC current distribution with long transmission cable. Proc IEEE Workshop on Control and Modeling for Power Electronics, p.1-8.

[25]Wang ZY, Lai XQ, Wu Q, 2017. A PSR CC/CV flyback converter with accurate CC control and optimized CV regulation strategy. IEEE Trans Power Electron, 32(9): 7045-7055.

[26]Zhang K, Shan ZY, Jatskevich J, 2017. Large- and small-signal average-value modeling of dual-active-bridge DC-DC converter considering power losses. IEEE Trans Power Electron, 32(3):1964-1974.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE