Full Text:   <142>

Summary:  <28>

CLC number: TP242.6; V279

On-line Access: 2020-05-18

Received: 2020-02-10

Revision Accepted: 2020-03-30

Crosschecked: 2020-04-13

Cited: 0

Clicked: 241

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wan-ying Ruan

https://orcid.org/0000-0002-1482-257X

Hai-bin Duan

https://orcid.org/0000-0002-4926-3202

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.5 P.740-748

10.1631/FITEE.2000066


Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization


Author(s):  Wan-ying Ruan, Hai-bin Duan

Affiliation(s):  State Key Laboratory of Virtual Reality Technology and Systems, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China; more

Corresponding email(s):   wyruan@buaa.edu.cn, hbduan@buaa.edu.cn

Key Words:  Unmanned aerial vehicle (UAV), Obstacle avoidance, Pigeon-inspired optimization, Multi-objective social learning pigeon-inspired optimization (MSLPIO)


Wan-ying Ruan, Hai-bin Duan. Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 740-748.

@article{title="Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization",
author="Wan-ying Ruan, Hai-bin Duan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="5",
pages="740-748",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000066"
}

%0 Journal Article
%T Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization
%A Wan-ying Ruan
%A Hai-bin Duan
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 5
%P 740-748
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000066

TY - JOUR
T1 - Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization
A1 - Wan-ying Ruan
A1 - Hai-bin Duan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 5
SP - 740
EP - 748
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000066


Abstract: 
We propose multi-objective social learning pigeon-inspired optimization (MSLPIO) and apply it to obstacle avoidance for unmanned aerial vehicle (UAV) formation. In the algorithm, each pigeon learns from the better pigeon but not necessarily the global best one in the update process. A social learning factor is added to the map and compass operator and the landmark operator. In addition, a dimension-dependent parameter setting method is adopted to improve the blindness of parameter setting. We simulate the flight process of five UAVs in a complex obstacle environment. Results verify the effectiveness of the proposed method. MSLPIO has better convergence performance compared with the improved multi-objective pigeon-inspired optimization and the improved non-dominated sorting genetic algorithm.

基于多目标社会学习鸽群优化的多无人机避障控制

阮婉莹1,段海滨1,2
1北京航空航天大学自动化科学与电气工程学院,虚拟现实技术与系统国家重点实验室,中国北京市,100083
2鹏城实验室,中国深圳市,518000

摘要:提出多目标社会学习鸽群优化(MSLPIO)方法,将其应用于无人机编队避障控制。该算法特点在于,每只鸽子在更新过程中并非向全局最优的鸽子学习,而是学习比自己占优的任何鸽子。在地图指南针算子和地标算子中引入社会学习因子。此外,为避免参数设置的盲目性,采用维数相关的参数设置方法。本文模拟了5架飞机在复杂障碍环境下的飞行过程,实验结果验证了该方法的有效性。与改进的多目标鸽群优化算法和改进的非占优排序遗传算法相比,MSLPIO具有更好的收敛性。

关键词:无人机;避障;鸽群优化;多目标社会学习鸽群优化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alonso-Mora J, Montijano E, Schwager M, et al., 2016. Distributed multi-robot formation control among obstacles: a geometric and optimization approach with consensus. Proc IEEE Int Conf on Robotics and Automation, p.5356-5363.

[2]Benjamin MR, Defilippo M, Robinette P, et al., 2019. Obstacle avoidance using multiobjective optimization and a dynamic obstacle manager. IEEE J Ocean Eng, 44(2):331-342.

[3]Biro D, Sasaki T, Portugal SJ, 2016. Bringing a time-depth perspective to collective animal behaviour. Trends Ecol Evol, 31(7):550-562.

[4]Cheng R, Jin YC, 2015. A social learning particle swarm optimization algorithm for scalable optimization. Inform Sci, 291:43-60.

[5]Di B, Zhou R, Duan HB, 2015. Potential field based receding horizon motion planning for centrality-aware multiple UAV cooperative surveillance. Aerosp Sci Technol, 46:386-397.

[6]Duan HB, Qiao PX, 2014. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int J Intell Comput Cybern, 7(1):24-37.

[7]Faisal M, Hedjar R, Al Sulaiman M, et al., 2013. Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment. Int J Adv Robot Syst, 10(1):37.

[8]Ferri G, Munafò A, LePage KD, 2018. An autonomous underwater vehicle data-driven control strategy for target tracking. IEEE J Ocean Eng, 43(2):323-343.

[9]Floreano D, Wood RJ, 2015. Science, technology and the future of small autonomous drones. Nature, 521(7553):460-466.

[10]Forestiero A, 2017. Bio-inspired algorithm for outliers detection. Multimed Tools Appl, 76(24):25659-25677.

[11]Guo X, Lu JQ, Alsaedi A, et al., 2018. Bipartite consensus for multi-agent systems with antagonistic interactions and communication delays. Phys A, 495:488-497.

[12]Ho HS, Do CS, 2017. Multi-agent based design of autonomous UAVs for both flocking and formation flight. J Adv Korea Navig Technol, 21(6):521-528.

[13]Kownacki C, Ambroziak L, 2017. Local and asymmetrical potential field approach to leader tracking problem in rigid formations of fixed-wing UAVs. Aerosp Sci Technol, 68:465-474.

[14]Luo QN, Duan HB, 2017. Distributed UAV flocking control based on homing pigeon hierarchical strategies. Aerosp Sci Technol, 70:257-264.

[15]Mohanty PK, Parhi DR, 2012. Path generation and obstacle avoidance of an autonomous mobile robot using intelligent hybrid controller. Proc 3rd Int Conf on Swarm, Evolutionary, and Memetic Computing, p.240-247.

[16]Molinos EJ, Llamazares Á, Ocana M, 2019. Dynamic window based approaches for avoiding obstacles in moving. Robot Auton Syst, 118:112-130.

[17]Paul AK, Shill PC, 2018. New automatic fuzzy relational clustering algorithms using multi-objective NSGA-II. Inform Sci, 448-449:112-133.

[18]Qiu HX, Duan HB, 2017a. Multiple UAV distributed close formation control based on in-flight leadership hierarchies of pigeon flocks. Aerosp Sci Technol, 70:471-486.

[19]Qiu HX, Duan HB, 2017b. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments. ISA Trans, 71:93-102.

[20]Qiu HX, Duan HB, 2020. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Inform Sci, 509:515-529.

[21]Sun F, Turkoglu K, 2017. Distributed real-time non-linear receding horizon control methodology for multi-agent consensus problems. Aerosp Sci Technol, 63:82-90.

[22]Wang J, Ahn IS, Lu YF, et al., 2017. A distributed estimation algorithm for collective behaviors in multiagent systems with applications to unicycle agents. Int J Contr Autom Syst, 15(6):2829-2839.

[23]Wu ST, 2013. Flight Control System (2nd Ed.). Beihang University Press, Beijing, China (in Chinese).

[24]Yan MD, Zhu X, Zhang XX, et al., 2017. Consensus-based three-dimensional multi-UAV formation control strategy with high precision. Front Inform Technol Electron Eng, 18(7):968-977.

[25]Zhang T, Li Q, Zhang CS, et al., 2017. Current trends in the development of intelligent unmanned autonomous systems. Front Inform Technol Electron Eng, 18(1):68-85.

[26]Zhao WW, Chu HR, Zhang MY, et al., 2019. Flocking control of fixed-wing UAVs with cooperative obstacle avoidance capability. IEEE Access, 7:17798-17808.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE