CLC number: TN61
On-line Access: 2021-08-17
Received: 2020-05-12
Revision Accepted: 2020-09-23
Crosschecked: 2021-07-19
Cited: 0
Clicked: 5264
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0001-8852-3516
Zhongqian Niu, Bo Zhang, Daotong Li, Dongfeng Ji, Yang Liu, Yinian Feng, Tianchi Zhou, Yaohui Zhang, Yong Fan. A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(8): 1104-1113.
@article{title="A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands",
author="Zhongqian Niu, Bo Zhang, Daotong Li, Dongfeng Ji, Yang Liu, Yinian Feng, Tianchi Zhou, Yaohui Zhang, Yong Fan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="8",
pages="1104-1113",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000229"
}
%0 Journal Article
%T A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands
%A Zhongqian Niu
%A Bo Zhang
%A Daotong Li
%A Dongfeng Ji
%A Yang Liu
%A Yinian Feng
%A Tianchi Zhou
%A Yaohui Zhang
%A Yong Fan
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 8
%P 1104-1113
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000229
TY - JOUR
T1 - A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands
A1 - Zhongqian Niu
A1 - Bo Zhang
A1 - Daotong Li
A1 - Dongfeng Ji
A1 - Yang Liu
A1 - Yinian Feng
A1 - Tianchi Zhou
A1 - Yaohui Zhang
A1 - Yong Fan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 8
SP - 1104
EP - 1113
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000229
Abstract: This paper presents a mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands. To show the necessity of improving the mechanical properties of the coupler’s branch in submillimeter and terahertz bands, a comprehensive study regarding the displacement of hybrid branch variation with varying width-length ratio and height-length ratio has been completed. In addition, a modified 3-dB waveguide hybrid coupler is designed and presented. Compared with the traditional branch structure, the proposed hybrid consists of a modified middle branch with circular cutouts at the top and bottom on both sides instead of the traditional rectangle branch, which increases the branch size and improves its mechanical reliability while achieving the same performance. Simulation results show that the deformation of the modified hybrid branch is 22% less than those of other traditional structure designs under the same stress. In practice, a vibration experiment is set up to verify the mechanical reliability of hybrid couplers. Measurement results show that the experiment deteriorates the coupling performance. Experimental results verify that the performance of the novel structure coupler is better than that of a traditional structure branch hybrid coupler under the same electrical properties.
[1]Armstrong CM, 2012. The truth about terahertz. IEEE Spectr, 49(9):36-41.
[2]Chattopadhyay G, 2011. Technology, capabilities, and performance of low power terahertz sources. IEEE Trans Terahertz Sci Technol, 1(1):33-53.
[3]Chen Z, Zhang B, Zhang Y, et al., 2016a. 220 GHz outdoor wireless communication system based on a Schottky-diode transceiver. IEICE Electron Expr, 13(9):1-9.
[4]Chen Z, Wang H, Alderman B, et al., 2016b. 190 GHz high power input frequency doubler based on Schottky diodes and AlN substrate. IEICE Electron Expr, 13(22):1-12.
[5]Dhillon SS, Vitiello MS, Linfield EH, et al., 2017. The 2017 terahertz science and technology roadmap. J Phys D Appl Phys, 50(4):043001.
[6]Gonzalez A, Kojima T, Kaneko K, et al., 2017. 275–500 GHz waveguide diplexer to combine local oscillators for different frequency bands. IEEE Trans Terahertz Sci Technol, 7(6):669-676.
[7]Graham-Rowe D, 2007. Terahertz takes to the stage. Nat Photon, 1(2):75-77.
[8]Hesper R, Khudchenko A, Baryshev AM, et al., 2017. A high-performance 650-GHz sideband-separating mixer—design and results. IEEE Trans Terahertz Sci Technol, 7(6):686-693.
[9]Hosako I, Sekine N, Patrashin M, et al., 2007. At the dawn of a new era in terahertz technology. Proc IEEE, 95(8):1611-1623.
[10]Kooi JW, Chamberlin RA, Monje R, et al., 2012. Balanced receiver technology development for the Caltech Submillimeter Observatory. IEEE Trans Terahertz Sci Technol, 2(1):71-82.
[11]Lubecke VM, Mizuno K, Rebeiz GM, 1998. Micromachining for terahertz applications. IEEE Trans Microw Theory Techn, 46(11):1821-1831.
[12]Malo-Gomez I, Gallego-Puyol JD, Diez-Gonzalez C, et al., 2009. Cryogenic hybrid coupler for ultra-low-noise radio astronomy balanced amplifiers. IEEE Trans Microw Theory Techn, 57(12):3239-3245.
[13]Müller J, Pham MN, Jacob AF, 2011. Directional coupler compensation with optimally positioned capacitances. IEEE Trans Microw Theory Techn, 59(11):2824-2832.
[14]Niu ZQ, Zhang B, Yang K, et al., 2019a. Mode analyzing method for fast design of branch waveguide coupler. IEEE Trans Microw Theory Techn, 67(12):4733-4740.
[15]Niu ZQ, Zhang B, Ji DF, et al., 2019b. A novel 3-dB waveguide hybrid coupler for terahertz operation. IEEE Microw Wirel Compon Lett, 4(29):273-275.
[16]Phromloungsri R, Chongcheawchamnan M, Robertson ID, 2006. Inductively compensated parallel coupled microstrip lines and their applications. IEEE Trans Microw Theory Techn, 54(9):3571-3582.
[17]Rashid H, Meledin D, Desmaris V, et al., 2014. Novel waveguide 3 dB hybrid with improved amplitude imbalance. IEEE Microw Compon Lett, 24(4):212-214.
[18]Rashid H, Desmaris V, Belitsky V, et al., 2016. Design of wideband waveguide hybrid with ultra-low amplitude imbalance. IEEE Trans Terahertz Sci Technol, 6(1):83-90.
[19]Reed J, 1958. The multiple branch waveguide coupler. IRE Trans Microw Theory Techn, 6(4):398-403.
[20]Siles JV, Maestrini A, Alderman B, et al., 2011. A single-waveguide in-phase power-combined frequency doubler at 190 GHz. IEEE Microw Wirel Compon Lett, 21(6):332-334.
[21]Sobis PJ, Stake J, Emrich A, 2008. A 170 GHz 45° hybrid for submillimeter wave sideband separating subharmonic mixers. IEEE Microw Wirel Compon Lett, 18(10):680-682.
[22]Tonouchi M, 2007. Cutting-edge terahertz technology. Nat Photon, 1(2):97-105.
[23]Zhang B, Niu ZQ, Wang JL, et al., 2020. Four-hundred gigahertz broadband multi-branch waveguide coupler. IET Microw Antenn Propag, 14(11):1175-1179.
[24]Zhou YF, Hu J, Liu S, et al., 2014. A terahertz-band branch waveguide directional coupler based on micro-machining. Int Conf on Communication Problem-Solving, p.223-226.
Open peer comments: Debate/Discuss/Question/Opinion
<1>