Full Text:   <6068>

Summary:  <1687>

CLC number: TN61

On-line Access: 2021-08-17

Received: 2020-05-12

Revision Accepted: 2020-09-23

Crosschecked: 2021-07-19

Cited: 0

Clicked: 5264

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhongqian Niu

https://orcid.org/0000-0001-8852-3516

Bo Zhang

https://orcid.org/0000-0002-8119-5000

Daotong Li

https://orcid.org/0000-0003-4413-4847

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.8 P.1104-1113

http://doi.org/10.1631/FITEE.2000229


A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands


Author(s):  Zhongqian Niu, Bo Zhang, Daotong Li, Dongfeng Ji, Yang Liu, Yinian Feng, Tianchi Zhou, Yaohui Zhang, Yong Fan

Affiliation(s):  School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; more

Corresponding email(s):   zhangbouestc@yeah.net

Key Words:  Directional coupler, 3-dB waveguide hybrid coupler, Submillimeter-wave device, Terahertz circuit, Mechanical reliability


Zhongqian Niu, Bo Zhang, Daotong Li, Dongfeng Ji, Yang Liu, Yinian Feng, Tianchi Zhou, Yaohui Zhang, Yong Fan. A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(8): 1104-1113.

@article{title="A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands",
author="Zhongqian Niu, Bo Zhang, Daotong Li, Dongfeng Ji, Yang Liu, Yinian Feng, Tianchi Zhou, Yaohui Zhang, Yong Fan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="8",
pages="1104-1113",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000229"
}

%0 Journal Article
%T A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands
%A Zhongqian Niu
%A Bo Zhang
%A Daotong Li
%A Dongfeng Ji
%A Yang Liu
%A Yinian Feng
%A Tianchi Zhou
%A Yaohui Zhang
%A Yong Fan
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 8
%P 1104-1113
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000229

TY - JOUR
T1 - A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands
A1 - Zhongqian Niu
A1 - Bo Zhang
A1 - Daotong Li
A1 - Dongfeng Ji
A1 - Yang Liu
A1 - Yinian Feng
A1 - Tianchi Zhou
A1 - Yaohui Zhang
A1 - Yong Fan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 8
SP - 1104
EP - 1113
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000229


Abstract: 
This paper presents a mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands. To show the necessity of improving the mechanical properties of the coupler’s branch in submillimeter and terahertz bands, a comprehensive study regarding the displacement of hybrid branch variation with varying width-length ratio and height-length ratio has been completed. In addition, a modified 3-dB waveguide hybrid coupler is designed and presented. Compared with the traditional branch structure, the proposed hybrid consists of a modified middle branch with circular cutouts at the top and bottom on both sides instead of the traditional rectangle branch, which increases the branch size and improves its mechanical reliability while achieving the same performance. Simulation results show that the deformation of the modified hybrid branch is 22% less than those of other traditional structure designs under the same stress. In practice, a vibration experiment is set up to verify the mechanical reliability of hybrid couplers. Measurement results show that the experiment deteriorates the coupling performance. Experimental results verify that the performance of the novel structure coupler is better than that of a traditional structure branch hybrid coupler under the same electrical properties.

亚毫米和太赫兹波段3-dB分支波导定向耦合器的机械可靠性研究

牛中乾1,张波1,李道通2,纪东峰1,刘洋1,丰益年1,周天驰1,张耀辉1,樊勇1
1电子科技大学电子科学与工程学院,中国成都市,611731
2重庆大学通信与测控中心,中国重庆市,400044
摘要:本文研究亚毫米和太赫兹波段3-dB分支波导定向耦合器的机械可靠性。为证明在亚毫米波和太赫兹频段提升分支波导定向耦合器力学性能的必要性,详细分析了不同宽长比和高长比时耦合器分支的应力变化。此外,对一种改进型3-dB分支波导定向耦合器的力学性能进行了研究。与传统耦合器结构相比,改进型耦合器在传统矩形分支的顶部和底部作了圆角处理,在实现相同性能的情况下,提升了耦合器分支宽度,提高了波导耦合器的机械可靠性。仿真结果表明,在相同应力作用下,改进型分支结构的应力变化量比传统结构低22%。同时,本文通过振动实验验证定向耦合器的机械可靠性。测量结果显示,实验使得耦合性能恶化。实验结果表明,在相同电学性能下,改进型分支波导定向耦合器的力学性能优于传统结构。

关键词:定向耦合器;3-dB分支波导定向耦合器;亚毫米波器件;太赫兹电路;机械可靠性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Armstrong CM, 2012. The truth about terahertz. IEEE Spectr, 49(9):36-41.

[2]Chattopadhyay G, 2011. Technology, capabilities, and performance of low power terahertz sources. IEEE Trans Terahertz Sci Technol, 1(1):33-53.

[3]Chen Z, Zhang B, Zhang Y, et al., 2016a. 220 GHz outdoor wireless communication system based on a Schottky-diode transceiver. IEICE Electron Expr, 13(9):1-9.

[4]Chen Z, Wang H, Alderman B, et al., 2016b. 190 GHz high power input frequency doubler based on Schottky diodes and AlN substrate. IEICE Electron Expr, 13(22):1-12.

[5]Dhillon SS, Vitiello MS, Linfield EH, et al., 2017. The 2017 terahertz science and technology roadmap. J Phys D Appl Phys, 50(4):043001.

[6]Gonzalez A, Kojima T, Kaneko K, et al., 2017. 275–500 GHz waveguide diplexer to combine local oscillators for different frequency bands. IEEE Trans Terahertz Sci Technol, 7(6):669-676.

[7]Graham-Rowe D, 2007. Terahertz takes to the stage. Nat Photon, 1(2):75-77.

[8]Hesper R, Khudchenko A, Baryshev AM, et al., 2017. A high-performance 650-GHz sideband-separating mixer—design and results. IEEE Trans Terahertz Sci Technol, 7(6):686-693.

[9]Hosako I, Sekine N, Patrashin M, et al., 2007. At the dawn of a new era in terahertz technology. Proc IEEE, 95(8):1611-1623.

[10]Kooi JW, Chamberlin RA, Monje R, et al., 2012. Balanced receiver technology development for the Caltech Submillimeter Observatory. IEEE Trans Terahertz Sci Technol, 2(1):71-82.

[11]Lubecke VM, Mizuno K, Rebeiz GM, 1998. Micromachining for terahertz applications. IEEE Trans Microw Theory Techn, 46(11):1821-1831.

[12]Malo-Gomez I, Gallego-Puyol JD, Diez-Gonzalez C, et al., 2009. Cryogenic hybrid coupler for ultra-low-noise radio astronomy balanced amplifiers. IEEE Trans Microw Theory Techn, 57(12):3239-3245.

[13]Müller J, Pham MN, Jacob AF, 2011. Directional coupler compensation with optimally positioned capacitances. IEEE Trans Microw Theory Techn, 59(11):2824-2832.

[14]Niu ZQ, Zhang B, Yang K, et al., 2019a. Mode analyzing method for fast design of branch waveguide coupler. IEEE Trans Microw Theory Techn, 67(12):4733-4740.

[15]Niu ZQ, Zhang B, Ji DF, et al., 2019b. A novel 3-dB waveguide hybrid coupler for terahertz operation. IEEE Microw Wirel Compon Lett, 4(29):273-275.

[16]Phromloungsri R, Chongcheawchamnan M, Robertson ID, 2006. Inductively compensated parallel coupled microstrip lines and their applications. IEEE Trans Microw Theory Techn, 54(9):3571-3582.

[17]Rashid H, Meledin D, Desmaris V, et al., 2014. Novel waveguide 3 dB hybrid with improved amplitude imbalance. IEEE Microw Compon Lett, 24(4):212-214.

[18]Rashid H, Desmaris V, Belitsky V, et al., 2016. Design of wideband waveguide hybrid with ultra-low amplitude imbalance. IEEE Trans Terahertz Sci Technol, 6(1):83-90.

[19]Reed J, 1958. The multiple branch waveguide coupler. IRE Trans Microw Theory Techn, 6(4):398-403.

[20]Siles JV, Maestrini A, Alderman B, et al., 2011. A single-waveguide in-phase power-combined frequency doubler at 190 GHz. IEEE Microw Wirel Compon Lett, 21(6):332-334.

[21]Sobis PJ, Stake J, Emrich A, 2008. A 170 GHz 45° hybrid for submillimeter wave sideband separating subharmonic mixers. IEEE Microw Wirel Compon Lett, 18(10):680-682.

[22]Tonouchi M, 2007. Cutting-edge terahertz technology. Nat Photon, 1(2):97-105.

[23]Zhang B, Niu ZQ, Wang JL, et al., 2020. Four-hundred gigahertz broadband multi-branch waveguide coupler. IET Microw Antenn Propag, 14(11):1175-1179.

[24]Zhou YF, Hu J, Liu S, et al., 2014. A terahertz-band branch waveguide directional coupler based on micro-machining. Int Conf on Communication Problem-Solving, p.223-226.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE