CLC number: TP271
On-line Access: 2021-12-23
Received: 2021-05-27
Revision Accepted: 2021-11-28
Crosschecked: 2021-12-09
Cited: 0
Clicked: 3344
Citations: Bibtex RefMan EndNote GB/T7714
Yujia Zang, Yanhu Chen, Canjun Yang, Haoyu Zhang, Zhiyong Duan, Gul Muhammad. A stepless-power-reconfigurable converter for a constant current underwater observatory[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(12): 1625-1640.
@article{title="A stepless-power-reconfigurable converter for a constant current underwater observatory",
author="Yujia Zang, Yanhu Chen, Canjun Yang, Haoyu Zhang, Zhiyong Duan, Gul Muhammad",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="12",
pages="1625-1640",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100259"
}
%0 Journal Article
%T A stepless-power-reconfigurable converter for a constant current underwater observatory
%A Yujia Zang
%A Yanhu Chen
%A Canjun Yang
%A Haoyu Zhang
%A Zhiyong Duan
%A Gul Muhammad
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 12
%P 1625-1640
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100259
TY - JOUR
T1 - A stepless-power-reconfigurable converter for a constant current underwater observatory
A1 - Yujia Zang
A1 - Yanhu Chen
A1 - Canjun Yang
A1 - Haoyu Zhang
A1 - Zhiyong Duan
A1 - Gul Muhammad
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 12
SP - 1625
EP - 1640
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100259
Abstract: The conversion from constant current (CC) to constant voltage (CV) is one of the key technologies of CC underwater observatory systems. A shunt regulator with high stability and high reliability is usually used. Applications, however, are limited by high heat dissipation and low efficiency. In this paper, with an improved shunt regulation method, a novel concept of stepless power reconfiguration (SPR) for the CC/CV module is proposed. In cases with stable or slowly changing load, two modes of CC/CV conversion are proposed to reduce unnecessary power loss of the shunt regulator while being able to retain any operator-preset power margin in the system: (1) the manual SPR (MSPR) method based on single-loop control method; (2) the automatic SPR (ASPR) method based on inner-outer loop control method. The efficiency of the system is analyzed. How to select some key parameters of the system is discussed. Experimental results show that MSPR and ASPR are both effective and practical methods to reduce heat dissipation and improve the efficiency of the CC/CV module, while the high stability of the shunt regulator remains.
[1]Asakawa K, Kojima J, Muramatsu J, et al., 2003. Novel current to current converter for mesh-like scientific underwater cable network―concept and preliminary test result. OCEANS, p.1868-1873.
[2]Asakawa K, Kojima J, Muramatsu J, et al., 2007. Current-to-current converter for scientific underwater cable networks. IEEE J Ocean Eng, 32(3):584-592.
[3]Asakawa K, Yokobiki T, Goto TN, et al., 2009. New scientific underwater cable system Tokai-SCANNER for under-water geophysical monitoring utilizing a decommissioned optical underwater telecommunication cable. IEEE J Ocean Eng, 34(4):539-547.
[4]Butler R, 2003. The Hawaii-2 Observatory: observation of nanoearthquakes. Seismol Res Lett, 74(3):290-297.
[5]Chave AD, Waterworth G, Maffei AR, et al., 2004. Cabled ocean observatory systems. Mar Technol Soc J, 38(2):30-43.
[6]Chen YH, Yang CJ, Li DJ, et al., 2012. Design and application of a junction box for cabled ocean observatories. Mar Technol Soc J, 46(3):50-63.
[7]Chen YH, Howe BM, Yang CJ, 2015. Actively controllable switching for tree topology seafloor observation networks. IEEE J Ocean Eng, 40(4):993-1002.
[8]Chen YH, Zang YJ, Yao JJ, et al., 2019a. Optimal communication frequency for switching cabled ocean networks with commands carried over the power line. Front Inform Technol Electron Eng, 20(10):1331-1343.
[9]Chen YH, Xiao S, Li DJ, 2019b. Power system design for constant current subsea observatories. Front Inform Technol Electron Eng, 20(11):1505-1515.
[10]Chen YH, Zang YJ, Yang CJ, et al., 2020. Reconfigurable power converter for constant current underwater observatory. Electronics, 9(2):307.
[11]Choi JK, Nishida S, Yokobiki T, et al., 2013. Development of an automated cable-laying system for DONET construction. IEEE Int Underwater Technology Symp, p.1-6.
[12]Harris DW, Duennebier FK, 2002. Powering cabled ocean-bottom observatories. IEEE J Ocean Eng, 27(2):202-211.
[13]Howe BM, Kirkham H, Vorpérian V, 2002. Power system considerations for undersea observatories. IEEE J Ocean Eng, 27(2):267-274.
[14]Howe BM, Lukas R, Duennebier F, et al., 2011. ALOHA Cabled Observatory installation. OCEANS, p.1-11.
[15]Howe BM, Duennebier FK, Lukas R, 2015. The ALOHA Cabled Observatory. In: Favali P, Beranzoli L, de Santis A (Eds.), Seafloor Observatories. Springer, Berlin, Germany, p.439-463.
[16]Kanazawa T, Shinohara M, Sakai S, et al., 2008. A new compact ocean bottom cabled seismometers system for spatially dense observation on sea floor. OCEANS, p.1-5.
[17]Kanazawa T, Shinohara M, Sakai S, et al., 2011. New innovative ocean bottom cabled seismometer system and observation in the Sea of Japan. IEEE Symp on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, p.1-3.
[18]Kawaguchi K, Kaneda Y, Araki E, 2008. The DONET: a real-time seafloor research infrastructure for the precise earthquake and tsunami monitoring. OCEANS MTS/ IEEE Kobe Techno-Ocean, p.1-4.
[19]Kawaguchi K, Araki E, Kogure Y, et al., 2013. Development of DONET2—off Kii chanel observatory network. IEEE Int Underwater Technology Symp, p.1-5.
[20]Khan AB, Pham VL, Nguyen TT, et al., 2016. Multistage constant-current charging method for Li-ion batteries. IEEE Transportation Electrification Conf and Expo, p.381-385.
[21]Kojima J, Howe BM, Asakawa K, et al., 2005. Power systems for ocean regional cabled observatories. OCEANS, p.2176-2181.
[22]Lin R, Li DJ, Zhang T, et al., 2019. A non-contact docking system for charging and recovering autonomous under-water vehicle. J Mar Sci Technol, 24(3):902-916.
[23]Petitt RA, Harris DW, Wooding B, et al., 2002. The Hawaii-2 Observatory. IEEE J Ocean Eng, 27(2):245-253.
[24]Qu FZ, Wang ZD, Song H, et al., 2015. A study on a cabled seafloor observatory. IEEE Intell Syst, 30(1):66-69.
[25]Saha T, Wang HJ, Riar B, et al., 2018a. Analysis and design of a parallel resonant converter for constant current input to constant voltage output DC-DC converter over wide load range. Int Power Electronics Conf, p.4074-4079.
[26]Saha T, Bagchi AC, Wang HJ, et al., 2018b. Analysis and design of wide range output voltage regulated power supply for underwater constant input current DC distribution system. IEEE 19th Workshop on Control and Modeling for Power Electronics, p.1-7.
[27]Saha T, Bagchi AC, Zane RA, 2021. Analysis and design of an LCL-T resonant DC-DC converter for underwater power supply. IEEE Trans Power Electron, 36(6):6725-6737.
[28]Wang HJ, Saha T, Zane R, 2017. Impedance-based stability analysis and design considerations for DC current distribution with long transmission cable. IEEE 18th Workshop on Control and Modeling for Power Electronics, p.1-8.
[29]Wang HJ, Saha T, Riar B, et al., 2019. Design considerations for current-regulated series-resonant converters with a constant input current. IEEE Trans Power Electron, 34(1):141-150.
[30]Wang J, Li DJ, Yang CJ, et al., 2015. Developing a power monitoring and protection system for the junction boxes of an experimental seafloor observatory network. Front Inform Technol Electron Eng, 16(12):1034-1045.
[31]Yong SO, Rahim NA, 2013. Development of on-off duty cycle control with zero computational algorithm for CC-CV Li ion battery charger. IEEE Conf on Clean Energy and Technology, p.422-426.
[32]Zang YJ, Chen YH, Yang CJ, et al., 2020. A new approach for analyzing the effect of non-ideal power supply on a constant current underwater cabled system. Front Inform Technol Electron Eng, 21(4):604-614.
[33]Zapolskiy SA, Osipov AV, Zhuravlev IM, et al., 2018. Single-cycle LCL-T resonant converter for solar battery. XIV Int Scientific-Technical Conf on Actual Problems of Electronics Instrument Engineering, p.90-93.
[34]Zhang ZF, Chen YH, Li DJ, et al., 2018. Use of a coded voltage signal for cable switching and fault isolation in cabled seafloor observatories. Front Inform Technol Electron Eng, 19(11):1328-1339.
Open peer comments: Debate/Discuss/Question/Opinion
<1>