Full Text:   <4130>

Summary:  <314>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-05-06

Received: 2022-10-25

Revision Accepted: 2023-01-03

Crosschecked: 2023-05-06

Cited: 0

Clicked: 1441

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiang Hao

https://orcid.org/0000-0002-3931-6884

Zixin CAI

https://orcid.org/0009-0001-2076-5997

Xin HE

https://orcid.org/0000-0002-5843-0332

Guanghui REN

https://orcid.org/0000-0002-9867-8279

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.4 P.617-625

http://doi.org/10.1631/FITEE.2200510


Wavelength-selective wavefront shaping by metasurface


Author(s):  Zixin CAI, Xin HE, Xin LIU, Shijie TU, Xinjie SUN, Paul BECKETT, Aditya DUBEY, Arnan MITCHELL, Guanghui REN, Xu LIU, Xiang HAO

Affiliation(s):  State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Technology, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   xinhe.wins@outlook.com, guanghui.ren@rmit.edu.au, haox@zju.edu.cn

Key Words: 


Zixin CAI, Xin HE, Xin LIU, Shijie TU, Xinjie SUN, Paul BECKETT, Aditya DUBEY, Arnan MITCHELL, Guanghui REN, Xu LIU, Xiang HAO. Wavelength-selective wavefront shaping by metasurface[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(4): 617-625.

@article{title="Wavelength-selective wavefront shaping by metasurface",
author="Zixin CAI, Xin HE, Xin LIU, Shijie TU, Xinjie SUN, Paul BECKETT, Aditya DUBEY, Arnan MITCHELL, Guanghui REN, Xu LIU, Xiang HAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="4",
pages="617-625",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200510"
}

%0 Journal Article
%T Wavelength-selective wavefront shaping by metasurface
%A Zixin CAI
%A Xin HE
%A Xin LIU
%A Shijie TU
%A Xinjie SUN
%A Paul BECKETT
%A Aditya DUBEY
%A Arnan MITCHELL
%A Guanghui REN
%A Xu LIU
%A Xiang HAO
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 4
%P 617-625
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200510

TY - JOUR
T1 - Wavelength-selective wavefront shaping by metasurface
A1 - Zixin CAI
A1 - Xin HE
A1 - Xin LIU
A1 - Shijie TU
A1 - Xinjie SUN
A1 - Paul BECKETT
A1 - Aditya DUBEY
A1 - Arnan MITCHELL
A1 - Guanghui REN
A1 - Xu LIU
A1 - Xiang HAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 4
SP - 617
EP - 625
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200510


Abstract: 

基于超表面实现波长选择性波前整形

蔡子信1,何欣1,刘鑫1,涂世杰1,孙昕婕1,Paul BECKETT2,Aditya DUBEY3,Arnan MITCHELL3,任光辉3,刘旭1,郝翔1,4,5
1浙江大学光电科学与工程学院现代光学仪器国家重点实验室,中国杭州市,310027
2皇家墨尔本理工大学工程学院,澳大利亚墨尔本市,3000
3皇家墨尔本理工大学集成光子与应用中心,澳大利亚墨尔本市,3001
4浙江大学嘉兴研究院智能光电创新中心,中国嘉兴市,314000
5嘉兴市光电传感与智能成像重点实验室,中国嘉兴市,314000
摘要:精确的、与波长相关的相位调制在许多领域中是必不可少的,比如超分辨成像、全彩色全息、微纳加工以及光通讯。这一要求很难通过单一的传统光学元件实现,一般需要使用多个光学元件组合完成。本文提出一种可以实现波长选择性波前整形的超表面设计方法。具体来说,本文设计了一种超表面,它能够对785 nm波长的光做涡旋相位调制,同时不影响590 nm波长的光保持原有相位分布。本文通过干涉仪以及对应点扩散函数的测量来验证不同波长下的波前分布。与已提出的空间复用方式以及色散工程的方法相比,我们提出的设计方法更加直接,优化难度小,适用于需要波长选择性编码的光学系统。本文所提平面光学器件对于需要波长选择性编码的光学系统具有重要应用意义。

关键词:超表面;波长选择性;涡旋光;波前整形

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Arbabi E, Arbabi A, Kamali SM, et al., 2016. Multiwavelength metasurfaces through spatial multiplexing. Sci Rep, 6:32803.

[2]Bao YJ, Yu Y, Xu HF, et al., 2019. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl, 8:95.

[3]Berry MV, 1987. The adiabatic phase and Pancharatnam's phase for polarized light. J Mod Opt, 34(11):1401-1407.

[4]Deng ZL, Cao YY, Li XP, et al., 2018. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure. Photon Res, 6(5):443-450.

[5]Devlin RC, Khorasaninejad M, Chen WT, et al., 2016. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Nat Acad Sci USA, 113(38):10473-10478.

[6]Feng H, Li QT, Wan WP, et al., 2019. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photon, 6(11):2910-2916.

[7]Georgi P, Wei QS, Sain B, et al., 2021. Optical secret sharing with cascaded metasurface holography. Sci Adv, 7(16):eabf9718.

[8]Guo ZM, Liu HH, Xiang LN, et al., 2020. Generation of perfect vortex beams with polymer-based phase plate. IEEE Photon Technol Lett, 32(10):565-568.

[9]Hao X, Allgeyer ES, Lee DR, et al., 2021. Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nat Methods, 18(6):688-693.

[10]He X, Liu YJ, Ganesan K, et al., 2020. A single sensor based multispectral imaging camera using a narrow spectral band color mosaic integrated on the monochrome CMOS image sensor. APL Photon, 5(4):046104.

[11]Hell SW, Wichmann J, 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19(11):780-782.

[12]Hu YF, Liu X, Jin MK, et al., 2021. Dielectric metasurface zone plate for the generation of focusing vortex beams. PhotoniX, 2(1):10.

[13]Huang TY, Zhang DZ, Yoo S, et al., 2020. Reconfigurable multiwavelength fiber laser based on multimode interference in highly germanium-doped fiber. Appl Opt, 59(4):1163-1168.

[14]Ikezawa S, Yamada R, Takaki K, et al., 2022. Micro-optical line generator metalens for a visible wavelength based on octagonal nanopillars made of single-crystalline silicon. IEEE Sens J, 22(15):14851-14861.

[15]Jesacher A, Bernet S, Ritsch-Marte M, 2014. Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range. Opt Expr, 22(14):17590-17599.

[16]Khorasaninejad M, Ambrosio A, Kanhaiya P, et al., 2016a. Broadband and chiral binary dielectric meta-holograms. Sci Adv, 2(5):e1501258.

[17]Khorasaninejad M, Chen WT, Devlin RC, et al., 2016b. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352(6290):1190-1194.

[18]Li Y, Liu SJ, Sun DQ, et al., 2021. Single-layer multitasking vortex-metalens for ultra-compact two-photon excitation STED endomicroscopy imaging. Opt Expr, 29(3):‍3795-3807.

[19]Liu MZ, Zhu WQ, Huo PC, et al., 2021. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci Appl, 10(1):107.

[20]Liu X, Peng YF, Tu SJ, et al., 2021. Generation of arbitrary longitudinal polarization vortices by pupil function manipulation. Adv Photon Res, 2(1):2000087.

[21]Liu X, Tu SJ, Kuang CF, et al., 2022. Calibration of phase-only liquid-crystal spatial light modulators by diffractogram analysis. Opt Lasers Eng, 156:107056.

[22]Ma JQ, Li Y, Yu QZ, et al., 2018. Generation of high-quality tunable Airy beams with an adaptive deformable mirror. Opt Lett, 43(15):3634-3637.

[23]Maguid E, Yulevich I, Veksler D, et al., 2016. Photonic spin-controlled multifunctional shared-aperture antenna array. Science, 352(6290):1202-1206.

[24]Mirhosseini M, Magaña-Loaiza OS, O'Sullivan MN, et al., 2015. High-dimensional quantum cryptography with twisted light. New J Phys, 17(3):033033.

[25]Mueller JPB, Rubin NA, Devlin RC, et al., 2017. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118(11):113901.

[26]Ouadghiri-Idrissi I, Giust R, Froehly L, et al., 2016. Arbitrary shaping of on-axis amplitude of femtosecond Bessel beams with a single phase-only spatial light modulator. Opt Expr, 24(11):11495-11504.

[27]Richards B, Wolf E, 1959. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc Roy Soc A Math Phys Eng Sci, 253(1274):358-379.

[28]Ruffato G, Massari M, Romanato F, 2014. Generation of high-order Laguerre‍–‍Gaussian modes by means of spiral phase plates. Opt Lett, 39(17):5094-5097.

[29]Sasaki H, Yamamoto K, Wakunami K, et al., 2014. Large size three-dimensional video by electronic holography using multiple spatial light modulators. Sci Rep, 4:6177.

[30]Sell D, Yang JJ, Doshay S, et al., 2017. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities. Adv Opt Mater, 5(23):1700645.

[31]Shi ZJ, Khorasaninejad M, Huang YW, et al., 2018. Single-layer metasurface with controllable multiwavelength functions. Nano Lett, 18(4):2420-2427.

[32]Shrestha S, Overvig AC, Lu M, et al., 2018. Broadband achromatic dielectric metalenses. Light Sci Appl, 7:85.

[33]Spägele C, Tamagnone M, Kazakov D, et al., 2021. Multifunctional wide-angle optics and lasing based on supercell metasurfaces. Nat Commun, 12(1):3787.

[34]Yang WH, Xiao SM, Song QH, et al., 2020. All-dielectric metasurface for high-performance structural color. Nat Commun, 11(1):1864.

[35]Yu XM, Todi A, Tang HM, 2018. Bessel beam generation using a segmented deformable mirror. Appl Opt, 57(16):4677-4682.

[36]Zhang WY, Song HY, He X, et al., 2021. Deeply learned broadband encoding stochastic hyperspectral imaging. Light Sci Appl, 10(1):108.

[37]Zhao MX, Chen MK, Zhuang ZP, et al., 2021. Phase characterisation of metalenses. Light Sci Appl, 10(1):52.

[38]Zheng JY, He X, Beckett P, et al., 2021. Dichroic circular polarizers based on plasmonics for polarization imaging applications. Nanomaterials, 11(8):2145.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE