Full Text:   <1678>

CLC number: O152

On-line Access: 

Received: 2003-11-04

Revision Accepted: 2004-02-09

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3303

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2004 Vol.5 No.7 P.749~753

http://doi.org/10.1631/jzus.2004.0749


A characteristic condition of finite nilpotent group


Author(s):  LI Yang-ming

Affiliation(s):  Department of Mathematics, Zhejiang University, Hangzhou 310016, China; more

Corresponding email(s):   liyangming@gdei.edu.cn

Key Words:  Z-permutable subgroup, Nilpotent group, The generalized Fitting subgroup, Hypercenter subgroup


Share this article to: More

LI Yang-ming. A characteristic condition of finite nilpotent group[J]. Journal of Zhejiang University Science A, 2004, 5(7): 749~753.

@article{title="A characteristic condition of finite nilpotent group",
author="LI Yang-ming",
journal="Journal of Zhejiang University Science A",
volume="5",
number="7",
pages="749~753",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.0749"
}

%0 Journal Article
%T A characteristic condition of finite nilpotent group
%A LI Yang-ming
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 7
%P 749~753
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.0749

TY - JOUR
T1 - A characteristic condition of finite nilpotent group
A1 - LI Yang-ming
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 7
SP - 749
EP - 753
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.0749


Abstract: 
This paper gives a characteristic condition of finite nilpotent group under the assumption that all minimal subgroups of G are well-suited in G.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Asaad, M., Ballester-Bolinches, A., Pedraza Aguilera, M.C., 1996. A note on minimal subgroups of finite groups.Comm. in Algebra,24:2771-2776.

[2] Asaad, M., Heliel, A.A., 2003. On permutable subgroups of finite groups.Arch. Math.,80:113-118.

[3] Doerk, K., Hawkes, T.O., 1992. Finite Soluble Groups. De Gruyter, Berlin.

[4] Gorenstein, D., 1982. Finite Simple Groups. Plenum Press, New York, London.

[5] Huppert, B., 1968. Endliche Gruppen I. Springer-Verlag, Berlin.

[6] Huppert, B., Blackburn, N., 1982. Finite Groups III. Springer-Verlag, New York, Berlin.

[7] Kegel, O.H., 1962. Sylow-Gruppen und aubnormalteiler endlicher Gruppen.Math. Z.,78:205-221.

[8] Li, Y.M., Wang, Y.M., 2003. The influence of minimal subgroups on the structure of a finite group.Proc. AMS,131(2):337-341.

[9] Ore, O., 1937. Structures of group theory.Duke Math J.,3:149-174.

[10] Wang, Y., Li, Y., Wang, J., 2003. Finite groups with C-supplemented minimal subgroups.Algebra Collo-quium,10(3):413-425.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

SMAEIL@GG<SMAEILHOSSEINI25@YAHOO.COM>

2010-12-05 13:43:51

HI
Please send this journal for me
thanks

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE