CLC number: TK123
On-line Access:
Received: 2009-02-14
Revision Accepted: 2009-04-06
Crosschecked: 2009-08-20
Cited: 6
Clicked: 6853
Zhi-hua GAN, Zhuo-pei LI, Jie CHEN, Li DAI, Li-min QIU. Design and preliminary experimental investigation of a 4 K Stirling-type pulse tube cryocooler with precooling[J]. Journal of Zhejiang University Science A, 2009, 10(9): 1277-1284.
@article{title="Design and preliminary experimental investigation of a 4 K Stirling-type pulse tube cryocooler with precooling",
author="Zhi-hua GAN, Zhuo-pei LI, Jie CHEN, Li DAI, Li-min QIU",
journal="Journal of Zhejiang University Science A",
volume="10",
number="9",
pages="1277-1284",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0920095"
}
%0 Journal Article
%T Design and preliminary experimental investigation of a 4 K Stirling-type pulse tube cryocooler with precooling
%A Zhi-hua GAN
%A Zhuo-pei LI
%A Jie CHEN
%A Li DAI
%A Li-min QIU
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 9
%P 1277-1284
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0920095
TY - JOUR
T1 - Design and preliminary experimental investigation of a 4 K Stirling-type pulse tube cryocooler with precooling
A1 - Zhi-hua GAN
A1 - Zhuo-pei LI
A1 - Jie CHEN
A1 - Li DAI
A1 - Li-min QIU
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 9
SP - 1277
EP - 1284
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0920095
Abstract: A stirling-type pulse tube cryocooler (PTC) with precooling was designed and manufactured to investigate its performance at 4 K. Numerical simulation was carried out based on the well-known regenerator model REGEN with an emphasis on the performance of a 4 K stage regenerator of the Stirling-type PTC as influenced by the warm end temperature, pressure ratio, frequency and average pressure with helium-4 and helium-3 as the working fluid respectively. This study demonstrates that the use of a cold inertance tube can significantly improve the efficiency of a 4 K Stirling-type PTC. A preliminary experimental investigation was carried out with helium-4 as the working fluid and a refrigeration temperature of 4.23 K was achieved. The experimental results show that the operating frequency has a significant influence on the performance of the Stirling-type PTC and a relatively low average pressure is favorable for decreasing the loss associated with the real gas effects of a 4 K Stirling-type PTC.
[1] Dai, L., Gan, Z.H., Qiu, L.M., Zhang, X.B., Zhang, X.J., 2007. Design of 30 Hz regenerator operating at liquid helium temperatures. Cryogenic Engineering, suppl:194-199 (in Chinese).
[2] Gan, Z.H., Liu, G.J., Wu, Y.Z., Cao, Q., Qiu, L.M., Chen, G.B., Pfotenhauer, J.M., 2008. Study on a 5.0 W/80 K single stage Stirling type pulse tube cryocooler. Journal of Zhejiang University SCIENCE A, 9(9):1277-1282.
[3] Gan, Z.H., Dong, W.Q., Qiu, L.M., Zhang, X.B., Sun, H., He, Y.L., Radebaugh, R., 2009. A single-stage GM-type pulse tube cryocooler operating at 10.6 K. Cryogenics, 49(5):198-201.
[4] Huang, Y.H., Chen, G.B., Arp, V.D., 2006. Equation of state for fluid helium-3 based on Debye phonon model. Applied Physics Letters, 88(9):091905.
[5] Jiang, N., Lindemann, F., Giebeler, F., Thummes, G., 2004. A 3He pulse tube cooler operating down to 1.3 K. Cryogenics, 44(11):809-816.
[6] Nast, T., Olson, J., Champagne, P., Evtimov, B., Frank, D., Roth, E., Renna, T., 2006. Overview of Lockheed Martin cryocoolers. Cryogenics, 46(2-3):164-168.
[7] Nast, T., Olson, J., Roth, E., Evtimov, B., Frank, D., Champagne, P., 2007. Development of Remote Cooling Systems for Low-temperature, Space-borne Systems. Cryocoolers 14th International Cryocooler Conference, CO, USA, p.33-40.
[8] Nast, T., Olson, J., Champagne, P., Mix, J., Evtimov, B., Roth, E., Collaco, A., 2008. Development of a 4.5 K Pulse Tube Cryocooler for Superconducting Electronics. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 53:881-886.
[9] Olson, J., Champagne, P., Roth, E., Evtimov, B., Clappier, R., Nast, T., Renna, T., Martin, B., 2005. Lockheed Martin 6 K/18 K Cryocooler. Cryocoolers 13th Springer Science & Business Media, NY, USA, p.25-30.
[10] Olson, J.R., Moore, M., Champagne, P., Roth, E., Evtimov, B., Jensen, J., Collaco, A., Nast, T., 2006. Development of a Space-type 4-stage Pulse Tube Cryocooler for Very Low Temperature. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 51:623-631.
[11] Qiu, L.M., He, Y.L., Gan, Z.H, Wang, L.H., Chen, G.B., 2005. A separate two-stage pulse tube cooler working at liquid Helium temperature. Chinese Science Bulletin, 50(10):1030-1033.
[12] Qiu, L.M., Li, Z.P., Gan, Z.H., Dai, L., 2008. Design of a 4 K Single-stage Stirling Type Pulse Tube Cooler Precooled by a G-M Type Pulse Tube Cooler. International Conference on Cryogenics and Refrigeration, Beijing, China, p.313-316.
[13] Radebaugh, R., O′Gallagher, A., 2006. Regenerator Operation at Very High Frequencies for Micro-cryocoolers. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 51:1919-1928.
[14] Radebaugh, R., O′Gallagher, A., Gary, J., 2002. Regenerator Behavior at 4 K: Effect of Volume and Porosity. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 47:961-968.
[15] Radebaugh, R., Lewis, M., Luo, E.C., Pfotenhauer, J.M., Nellis, G.F., Schunk, L.A., 2006. Inertance Tube Optimization for Pulse Tube Refrigerators. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 51:59-67.
[16] Radebaugh, R., Huang, Y.H., O′Gallagher, A., Gary, J., 2008. Calculated Regenerator Performance at 4 K with Helium-4 and Helium-3. Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 53:225-234.
[17] Radebaugh, R., Huang, Y., O′Gallagher, A., Gary, J., 2009. Calculated Performance of Low-porosity Regenerators at 4 K with He-4 and He-3. Cryocoolers 15th International Cryocooler Conference, CO, USA, p.325-334.
[18] Ross, R.G.Jr., 2005. A Study of the Use of 6 K ACTDP Cryocoolers for the MIRI Instrument on JWST. Cryocoolers 13th Springer Science & Business Media, NY, USA, p.15-24.
[19] Ross, R.G.Jr., Boyle, R.F., 2003. NASA Space Cryocooler Programs—An Overview. Cryocoolers 12, Kluwer Academic/Plenum Publishers, NY, USA, p.1-8.
[20] Ross, R.G.Jr., Johnson, D.L., 2006. NASA’s Advanced Cryocooler Technology Development Program (ACTDP). Advances in Cryogenic Engineering, American Institute of Physics, NY, USA, 51:607-614.
[21] Ross, R.G.Jr., Boyle, R.F., 2007. An Overview of NASA Space Cryocooler Programs-2006. Cryocoolers 14th International Cryocooler Conference, CO, USA, p.1-10.
[22] Webber, R.J., Dotsenko, V.V., Delmas, J., Kadin, A.M., Track, E.K., 2009. Evaluation of a 4 K 4-stage Pulse Tube Cryocooler for Superconducting Electronics. Cryocoolers 15th International Cryocooler Conference, CO, USA, p.657-664.
[23] Xu, M.Y., de Waele, A.T.A.M., Ju, Y.L., 1999. A pulse tube refrigerator below 2 K. Cryogenics, 39(10):865-869.
Open peer comments: Debate/Discuss/Question/Opinion
<1>