CLC number: TU311
On-line Access: 2011-01-06
Received: 2010-10-08
Revision Accepted: 2010-11-05
Crosschecked: 2010-12-07
Cited: 2
Clicked: 5767
Richard J. Jardine. Characterization of mudrocks: a practical application of advanced laboratory testing[J]. Journal of Zhejiang University Science A, 2011, 12(1): 1-14.
@article{title="Characterization of mudrocks: a practical application of advanced laboratory testing",
author="Richard J. Jardine",
journal="Journal of Zhejiang University Science A",
volume="12",
number="1",
pages="1-14",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000420"
}
%0 Journal Article
%T Characterization of mudrocks: a practical application of advanced laboratory testing
%A Richard J. Jardine
%J Journal of Zhejiang University SCIENCE A
%V 12
%N 1
%P 1-14
%@ 1673-565X
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000420
TY - JOUR
T1 - Characterization of mudrocks: a practical application of advanced laboratory testing
A1 - Richard J. Jardine
J0 - Journal of Zhejiang University Science A
VL - 12
IS - 1
SP - 1
EP - 14
%@ 1673-565X
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000420
Abstract: An integrated approach to geomaterial characterization is advocated that combines geology, in-situ testing, fabric studies, routine index experiments and advanced laboratory testing. It is shown that advanced laboratory testing can explore features such as kinematic yielding and anisotropy in stiffness or shear strength that would otherwise be impossible to quantify. A detailed study performed in London clay at the new Heathrow Terminal 5 site is used to illustrate the arguments made. It is shown that the London clay has strong anisotropy in stiffness, is highly non-linear over the strain range of engineering interest, has markedly anisotropic shear strength characteristics and exhibits a pronounced degree of brittleness. These features can impact significantly on the practical design and analysis of civil engineering works including shallow and deep foundations, tunnels and excavations, and the stability of slopes.
[1]Addenbrooke, T.I., Potts, D.M., Puzrin, A.M., 1997. The influence of pre-failure stiffness on the numerical analysis of tunnel construction. Géotechnique, 47(3):693-712.
[2]Albert, C., Zdravkovic, L., Jardine, R.J., 2003. Behaviour of Bothkennar Clay under Rotation of Principal Stresses. In: Vermeer, Schweiger, Karstunen, Cudney (Eds.), International Workshop on Geotechnics of Soft Soils-Theory and Practice. Essen Verlug Gluckauf, p.441-447.
[3]Ann-Minh, N., 2006. An investigation of the Anisotropic Stress-Strain-Strength Characteristics of an Eocene Clay. PhD Thesis, Imperial College London, London, UK.
[4]Bishop, A.W., Wesley, L.D., 1975. A hydraulic triaxial apparatus for controlled stress path testing. Géotechnique, 25(4):657-670.
[5]Burland, J.B., 1990. On the compressibility and shear strength of natural clays. Géotechnique, 40(3):329-378.
[6]Chow, F.C., 1997. Investigations into Displacement Pile Behaviour for Offshore Foundations. PhD Thesis, Imperial College London, London, UK.
[7]Cuccovillo, T., Coop, M.R., 1997. The measurements of local strains in triaxial testing using LVDTs. Géotechnique, 47(1):167-171.
[8]De Freitas, M.H., Mannion, W.G., 2007. A biostratigraphy for the London clay in London. Géotechnique, 57(1):91-99.
[9]Gasparre, A., 2005. Advanced laboratory characterisation of London clay. PhD Thesis, Imperial College London, London, UK.
[10]Gasparre, A., Nishimura, S., Coop, M.R., Jardine, R.J., 2007a. The influence of structure on the behaviour of London clay. Géotechnique, 57(1):19-31.
[11]Gasparre, A., Nishimura, S., Anh-Minh, N., Coop, M.R. Jardine, R.J., 2007b. The stiffness of natural London clay. Géotechnique, 57(1):33-47.
[12]Harris, D.I., 2002. The Big Ben Clock Tower and the Palace of Westminster. Building Response to Tunnelling. In: Burland, J.B., Standing, J.R., Jardine, F.M. (Eds.), Case Studies from Construction of the Jubilee Line Extension. Thomas Telford, London, 2:453-508.
[13]Hight, D.W., 1982. A simple piezometer probe for the routine measurement of pore pressures in triaxial tests on saturated soils. Géotechnique, 32(4):396-402.
[14]Hight, D.W., Jardine, R.J., 1993. Small Strain Stiffness and Strength Characteristics of Hard London Tertiary Clays. International Symposium on Hard Soils-Soft Rocks, Athens, Greece, p.533-552.
[15]Hight, D.W., Pickles, A.R., De Moor, E.K., Higgins, K.G., Jardine, R.J., Potts, D.M., 1992. Predicted and Measured Tunnel Distortions Associated with Construction of Waterloo International Terminal. Wroth Memorial Symposium on Predictive Soil Mechanics, Oxford. Thomas Telford, London, p.317-338.
[16]Hight, D.W., Bennell, J.D., Chana, B., Davis, P.D., Jardine, R.J., Porovic, E., 1997. Wave velocity and stiffness measurements of the Crag and Lower London Tertiaries at Sizewell. Géotechnique, 47(3):451-474.
[17]Hight, D.W., McMillan, F., Powell, J.J.M., Jardine, R.J., Allenou, C.P., 2003. Some Characteristics of London Clay. In: Tan et al. (Eds.), Characterisation andEngineering Properties of Natural soils. Swets & Zeitlinger, Lisse, the Netherlands, p.851-908.
[18]Hight, D.W., Gasparre, A., Nishimura, S., Ann-Minh, N., Jardine, R.J., Coop, M.R., 2007. Characteristics of the London clay from the Terminal 5 site at Heathrow Airport. Géotechnique, 57(1):3-18.
[19]Jardine, R.J., 1992. Observations on the kinematic nature of soil stiffness at small strains. Soils and Foundations, 32(2):111-124.
[20]Jardine, R.J., 1995. A Design for a New Versatile Hollow Cylinder Apparatus. Internal Report, Imperial College London, UK.
[21]Jardine, R.J., Potts, D.M., 1988. Hutton tension leg platform foundations: an approach to the prediction of driven pile behaviour. Géotechnique, 38(2):231-252.
[22]Jardine, R.J., St. John, H.D., Hight, D.W., Potts, D.M., 1991. Some Practical Applications of a Non-Linear Ground Model. Proceedings of the 10th ECSMFE, Florence, Italy, p.223-228.
[23]Jardine, R.J., Gens, A., Hight, D.W., Coop, M.R., 2004. Developments in Understanding Soil Behaviour. Conference on Advances in Geotechnical Engineering, Thomas Telford, London, p.103-207.
[24]Jardine, R.J., Standing, J.R., Kovacevic, N., 2005. Lessons Learned from Full Scale Observations and the Practical Application of Advanced Testing and Modeling. Proceedings of the 3rd International Symposium on Deformation Characteristics of Geomaterials, Lyon, France, 2:201-245.
[25]King, C., 1981. The Stratigraphy of the London Clay and Associated Deposits. Tertiary Research Special Paper 6, Rotterdam, Backhuys.
[26]Kovacevic, N., Hight, D.W., Potts, D.M., 2004. Temporary Slopes Stability in London Clay: Back Analyses of Two Case Histories. Advances in Geotechnical Engineering, Proceedings of the Skempton Memorial Conference on London, 3:1-14.
[27]Kovacevic, N., Hight, D.W., Potts, D.M., 2007. Predicting the stand-up time of temporary London clay slopes at Terminal 5, Heathrow Airport. Géotechnique, 57(1):63-74.
[28]Kuwano, R., Jardine, R.J., 1998. Stiffness Measurements in a Stress Path Cell. Prefailure Behaviour of Geomaterials. Thomas Telford, London, p.391-395.
[29]Kuwano, R., Jardine, R.J., 2002. On the applicability of cross anisotropic elasticity to granular materials at very small strains. Géotechnique, 52(10):727-750.
[30]Kuwano, R., Jardine, R.J., 2007. A triaxial investigation of kinematic yielding in sand. Géotechnique, 57(7):563-580.
[31]Nishimura, S., 2006. Laboratory Study of the Anisotropy of Natural London Clay. PhD Thesis, Imperial College London, UK.
[32]Nishimura, S., Minh, N.A., Jardine, R.J., 2007. Shear strength anisotropy of natural London clay. Géotechnique, 57(1):49-62.
[33]Porovic, E., 1995. Investigations of Soil Behaviour Using a Resonant Column Torsional Shear Hollow Cylinder Apparatus. PhD Thesis, University of London, UK.
[34]Potts, D.M., 2003. Numerical Analysis: a virtual dream or practical reality? Géotechnique, 53(6):535-573.
[35]Potts, D.M., Zdravkovic, L., 1999. Finite Element Analysis in Geotechnical Engineering: Theory. Thomas Telford, London, p.440.
[36]Potts, D.M., Zdravkovic, L., 2001. Finite Element Analysis in Geotechnical Engineering: Application. Thomas Telford, London, p.427.
[37]Potts, D.M., Kovacevic, N., Vaughan, P.R., 1997. Delayed collapse of cut slopes in stiff clay. Géotechnique, 47(5):953-982.
[38]Ridley, A.M., Burland, J.B., 1993. A new instrument for the measurement of soil moisture suction. Géotechnique,, 43(2):321-324.
[39]Shibuya, S., Hight, D.W., Jardine, R.J., 2003a. Four dimensional local boundary surfaces of an isotropically consolidated loose sand. Soils and Foundations, 43(2):89-103.
[40]Shibuya, S., Hight, D.W., Jardine, R.J., 2003b. Local boundary surfaces of a loose sand dependent on consolidation path. Soils and Foundations, 43(3):85-93.
[41]Smith, P.R., Jardine, R.J., Hight, D.W., 1992. On the yielding of Bothkennar clay. Géotechnique, 42(2):257-274.
[42]St. John, H.D, Potts, D.M., Jardine, R.J., Higgins, K.G., 1992. Prediction and Performance of Ground Response Due to Construction of a Deep Basement at 60 Victoria Embankment. Wroth Memorial Symposium on Predictive Soil Mechanics, Oxford. Thomas Telford, London, p.581-608.
[43]Symes, M.J.P.R., 1983. Rotation of Principal Stresses in Sand. PhD Thesis, University of London, UK.
Open peer comments: Debate/Discuss/Question/Opinion
<1>