Full Text:   <3957>

Summary:  <3079>

CLC number: O34

On-line Access: 2013-06-02

Received: 2013-01-19

Revision Accepted: 2013-05-19

Crosschecked: 2013-08-20

Cited: 14

Clicked: 8837

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.9 P.615-630


Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis*

Author(s):  Arturo Garcia-Perez1, Juan P. Amezquita-Sanchez2, Aurelio Dominguez-Gonzalez2, Ramin Sedaghati3, Roque Osornio-Rios2, Rene J. Romero-Troncoso1

Affiliation(s):  1. HSPdigitalCA Telematica-Procesamiento Digital de Señales, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle km 3.5+1.8, Palo Blanco, 36885 Salamanca, Gto., Mexico; more

Corresponding email(s):   troncoso@hspdigital.org

Key Words:  Truss structure, Vibration, Spectral analysis, Wavelet packet transform, Empirical mode decomposition, Artificial neural network (ANN)

Share this article to: More |Next Article >>>

Arturo Garcia-Perez, Juan P. Amezquita-Sanchez, Aurelio Dominguez-Gonzalez, Ramin Sedaghati, Roque Osornio-Rios, Rene J. Romero-Troncoso. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis[J]. Journal of Zhejiang University Science A, 2013, 14(9): 615-630.

@article{title="Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis",
author="Arturo Garcia-Perez, Juan P. Amezquita-Sanchez, Aurelio Dominguez-Gonzalez, Ramin Sedaghati, Roque Osornio-Rios, Rene J. Romero-Troncoso",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis
%A Arturo Garcia-Perez
%A Juan P. Amezquita-Sanchez
%A Aurelio Dominguez-Gonzalez
%A Ramin Sedaghati
%A Roque Osornio-Rios
%A Rene J. Romero-Troncoso
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 9
%P 615-630
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300030

T1 - Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis
A1 - Arturo Garcia-Perez
A1 - Juan P. Amezquita-Sanchez
A1 - Aurelio Dominguez-Gonzalez
A1 - Ramin Sedaghati
A1 - Roque Osornio-Rios
A1 - Rene J. Romero-Troncoso
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 9
SP - 615
EP - 630
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300030

Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real structures, two or more sites or types of damage can be present at the same time. It has been shown that one kind of damaged condition can interfere with the detection of another kind of damage, leading to an incorrect assessment about the structure condition. Identifying combined damage on structures still represents a challenge for condition monitoring, because the reliable identification of a combined damaged condition is a difficult task. Thus, this work presents a fusion of methodologies, where a single wavelet-packet and the empirical mode decomposition (EMD) method are combined with artificial neural networks (ANNs) for the automated and online identification-location of single or multiple-combined damage in a scaled model of a five-bay truss-type structure. Results showed that the proposed methodology is very efficient and reliable for identifying and locating the three kinds of damage, as well as their combinations. Therefore, this methodology could be applied to detection-location of damage in real truss-type structures, which would help to improve the characteristics and life span of real structures.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Adeli, H., 2001. Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and Infrastructure Engineering, 16(2):126-142. 

[2] Amezquita-Sanchez, J.P., Osornio-Rios, R.A., Romero-Troncoso, R.J., Dominguez-Gonzalez, A., 2012. Hardware-software system for simulating and analyzing earthquakes applied to civil structures. Natural Hazards and Earth System Sciences, 12:61-73. 

[3] Banks, H.T., Joyner, M.L., Wincheski, B., Winfree, W.P., 2002. Real time computational algorithms for eddy current based damage detection. Inverse Problems, 18(3):795-823. 

[4] Baptista, F.G., Filho, J.V., Inman, D.J., 2012. Real-time multi-sensors measurement system with temperature effects compensation for impedance-based structural health monitoring. Structural Health Monitoring, 11(2):173-186. 

[5] Batis, G., Rakanta, E., 2005. Corrosion of steel reinforcement due to atmospheric pollution. Cement and Concrete Composites, 27(1):269-275. 

[6] Chen, B., Xu, Y.L., Qu, W.L., 2005. Evaluation of atmospheric corrosion damage to steel space structures in coastal areas. International Journal of Solids and Structures, 42(16-17):4673-4694. 

[7] Cornwell, P., Farrar, C.R., Doebling, S.W., Sohn, H., 1999. Environmental variability of modal properties. Experimental Techniques, 23(6):45-48. 

[8] Curadelli, R.O., Riera, J.D., Ambrosini, D., Amani, M.G., 2008. Damage detection by means of structural damping identification. Engineering Structures, 30(12):3497-3504. 

[9] Doebling, S.W., Farrar, C.R., Prime, M.B., 1998. A summary review of vibration-based damage identification methods. Shock and Vibration Digest, 30:91-105. 

[10] Farrar, C.L., Worden, K., 2007. An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):303-315. 

[11] Guo, J., Chen, Y., Sun, B.N., 2005. Experimental study of structural damage identification based on WPT and coupling NN. Journal of Zhejiang University SCIENCE A, 6(7):663-669. 

[12] Han, J.G., Ren, W.X., Sun, Z.S., 2005. Wavelet packet based damage identification of beam structures. International Journal of Solids and Structures, 42(26):6610-6627. 

[13] Hao, H., Xia, Y., 2002. Vibration-based damage detection of structures by genetic algorithm. Journal of Computing in Civil Engineering, 16(3):222-229. 

[14] Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454:903-995. 

[15] Huang, Y., 2009. Advances in artificial neural networks methodological development and application. Algori-thms, 2:973-1007. 

[16] Jiang, X., Ma, Z.J., Ren, W.X., 2012. Crack detection from the slope of the mode shape using complex continuous wavelet transform. Computer-Aided Civil and Infrastrture Engineering, 27(3):187-201. 

[17] Ko, J.M., Chak, K.K., Wang, J.Y., 2003. Formulation of an Uncertainty Model Relating Modal Parameters and Environmental Factors by Using Long-term Monitoring Data. , Proceedings of Smart Structures and Materials: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, San Diego, CA, USA, 298-307. :298-307. 

[18] Law, S.S., Li, X.Y., Zhu, X.Q., Chan, S.L., 2005. Structural damage detection from wavelet packet sensitivity. Engineering Structures, 27(9):1339-1348. 

[19] Lei, Y., Jiang, Y., Xu, Z., 2012. Structural damage detection with limited input and output measurement signals. Mechanical Systems and Signal Processing, 28:229-243. 

[20] Li, H., Huang, Y., Chen, W.L., Ma, M.L., Tao, D.W., Ou, J.P., 2011. Estimation and warning of fatigue damage of FRP stay cables based on acoustic emission techniques and fractal theory. Computer-Aided Civil and Infrastructure Engineering, 26(7):500-512. 

[21] Mao, Y., Que, P., 2006. Application of Hilbert-Huang signal processing to ultrasonic non-destructive testing of oil pipelines. Journal of Zhejiang University SCIENCE A, 7(2):130-134. 

[22] Mehrjoo, M., Khaji, N., Moharrami, H., Bahreininejad, A., 2008. Damage detection of truss bridge joints using artificial neural networks. Expert Systems with Application, 35(3):1122-1131. 

[23] Meruane, V., Heylen, W., 2012. Structural damage assessment under varying temperature conditions. Structural Health Monitoring, 11(3):345-357. 

[24] Nishikawa, T., Yoshida, J., Sugiyama, T., Fujino, Y., 2012. Concrete crack detection by multiple sequential image filtering. Computer-Aided Civil and Infrastructure Engineering, 27(1):29-47. 

[25] Osornio-Rios, R.A., Amezquita-Sanchez, J.P., Romero-Troncoso, R.J., Garcia-Perez, A., 2012. MUSIC-ANN analysis for locating structural damages in a truss-type structure by means of vibrations. Computer-Aided Civil and Infrastructure Engineering, 27(9):687-698. 

[26] Peeters, B., de Roeck, G., 2001. One-year monitoring of the Z-24 Bridge: environmental effects versus damage events. Earthquake Engineering & Structural Dynamics, 30(2):149-171. 

[27] Razi, P., Esmaeel, R.A., Taheri, F., 2011. Application of a robust vibration-based non-destructive method for detection of fatigue cracks in structures. Smart Materials and Structures, 20(11):1-12. 

[28] Ren, W.X., Sun, Z.S., 2008. Structural damage identification by using wavelet entropy. Engineering Structures, 30(10):2840-2849. 

[29] Rezaei, D., Taheri, F., 2009. Experimental validation of a novel structural damage detection method based on empirical mode decomposition. Smart Materials and Structures, 18(4):045004

[30] Rezaei, D., Taheri, F., 2011. Damage identification in beams using empirical mode decomposition. Structural Health Monitoring, 10(3):261-274. 

[31] Sayyad, F.B., Kumar, B., 2011. Theoretical and experimental study for identification of crack in cantilever beam by measurement of natural frequencies. Journal of Vibration and Control, 17(8):1235-1240. 

[32] Shih, J.K.C., Delpak, R., Hu, C.W., Plassmann, P., Wawrzynek, A., Kogut, M., 2000. Thermographic nondestructive testing damage detection for metals and cementitious materials. Journal on Imaging Sciences, 48:33-43. 

[33] Taha, M.M.R., 2010. A neural-wavelet technique for damage identification in the ASCE benchmark structure using phase II experimental data. Advances in Civil Engineering, 2010:675927

[34] Talebinejad, I., Fischer, C., Ansari, F., 2011. Numerical evaluation of vibration-based methods for damage assessment of cable-stayed bridges. Computer-Aided Civil and Infrastructure Engineering, 26(3):239-251. 

[35] Tan, L., Wang, L., 2011. Oversampling technique for obtaining higher order derivative of low-frequency signals. IEEE Transactions on Instrumentation and Measurement, 60(11):3677-3684. 

[36] Umesha, P.K., Ravichandran, R., Sivasubramanian, K., 2009. Crack detection and quantification in beams using wavelets. Computer-Aided Civil and Infrastructure Engineering, 24(8):593-607. 

[37] Voigt, T., Akkaya, Y., Shah, S., 2003. Determination of early age mortar and concrete strength by ultrasonic wave reflections. Journal of Materials in Civil Engineering, 15(3):247-254. 

[38] Vossoughi, F., Ostertag, C.P., Monteiro, P.J.M., Albert, R.D., 2007. Damage characterization of concrete panels due to impact loading by motionless X-ray laminography. Journal of Materials Science, 42(9):3280-3285. 

[39] Wang, G.P., Hong, Y., Hong, D.P., Kim, Y.M., 2008. Damage detection of truss-like structures using wavelet transforms. Modern Physics Letters B, 22(11):1165-1170. 

[40] Wang, J., Chen, L., 2005. Damage detection of frames using the increment of lateral displacement change. Journal of Zhejiang University SCIENCE A, 6(3):202-212. 

[41] Wang, X., Hu, N., Fukunaga, H., Yao, Z.H., 2001. Structural damage identification using static test data and changes in frequencies. Engineering Structures, 23(6):610-621. 

[42] Xiang, J., Liang, M., 2012. Wavelet-based detection of beam cracks using modal shape and frequency measurements. Computer-Aided Civil and Infrastructure Engineering, 27(6):439-454. 

[43] Yan, G., Dyke, S.J., Irfanoglu, A., 2012. Experimental validation of a damage detection approach on a full-scale highway sign support truss. Mechanical Systems and Signal Processing, 28:195-211. 

[44] Yang, Q.W., Sun, B.X., 2011. Structural damage localization and quantification using static test data. Structural Health Monitoring, 10(4):381-389. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE